

Lecture Notes in Computer Science 4704
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Denilson Barbosa Angela Bonifati
Zohra Bellahsène Ela Hunt
Rainer Unland (Eds.)

Database and
XML Technologies

5th International
XML Database Symposium, XSym 2007
Vienna, Austria, September 23-24, 2007
Proceedings

13

Volume Editors

Denilson Barbosa
University of Calgary, Canada
E-mail: denilson@ucalgary.ca

Angela Bonifati
Italian National Research Council (Icar-CNR), Rende CS, Italy
E-mail: bonifati@icar.cnr.it

Zohra Bellahsène
Université Montpellier, 2LIRMM - UMR 5506 CNRS, Montpellier, France
E-mail: bella@lirmm.fr

Ela Hunt
ETH-Zentrum, Institut für Informationssysteme, Zürich, Switzerland
E-mail: elahunt@inf.ethz.ch

Rainer Unland
University of Duisburg-Essen, Essen, Germany
E-mail: UnlandR@informatik.uni-essen.de

Library of Congress Control Number: 2007935597

CR Subject Classification (1998): H.2, H.3, H.4, D.2, C.2.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-75287-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75287-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12167241 06/3180 5 4 3 2 1 0

PREFACE

Since its first edition in 2003, the XML Database Symposium series (XSym) has
been a forum for academics, practitioners, users and vendors to discuss the use
of and synergy between databases and XML. The previous symposia have
provided opportunities for timely discussions on a broad range of topics
pertaining to the theory and practice of XML data management and its
applications. XSym 2007 continues this tradition with a program consisting of
three research sessions, two keynote talks and a panel. We received 28 full
paper submissions, out of which 8 were accepted for publication in these
proceedings. Each submitted paper underwent a rigorous and careful review
by a minimum of 4 independent referees.

The contributions in these proceedings are a fine sample of the very best
current research in XPath and XQuery processing, XML Updates, Temporal
XML and Constraints. This volume also contains two invited short papers by
the XSym 2007 keynote speakers: Leonid Libkin (University of Edinburgh, UK)
contributed a thorough discussion of Normalization Theory for XML, while
Erhard Rahm (University of Leipzig, Germany) contributed an interesting
overview of the work on Dynamic Fusion of Web Data carried out at his re-
search group. This year, XSym will top its program off by an exciting panel
with the title “The Generation Y of XML Schema Matching”. It was proposed
and is organized by Avigdor Gal from Technion – Israel Institute of Technol-
ogy. We are looking forward to a really exciting program and event!

The organizers would like to express their gratitude to the authors, for
submitting their work to XSym 2007, and to the Program Committee, for pro-
viding very thorough evaluations of the submitted papers as well as for the
discussions that followed under significant time constraints. We also would
like to thank the invited speakers and the panel moderator for their efforts in
contributing to XSym 2007. Finally, we are also grateful to Microsoft for their
generous sponsorship, Andrei Voronkov for the EasyChair conference man-
agement system, and the local organizers for their effort in making XSym 2007
a pleasant and successful event.

July 2007 Denilson Barbosa
 Angela Bonifati
 Zohra Bellahsene
 Ela Hunt
 Rainer Unland

ORGANIZATION

General Chair
Zohra Bellahsene, LIRMM (France)

Program Committee Chairs
Denilson Barbosa, University of Calgary (Canada)
Angela Bonifati, Icar CNR (Italy)

Proceedings
Rainer Unland, University of Duisburg-Essen (Germany)

Communications and Sponsorship
Ela Hunt, ETH Zurich (Switzerland)

Local Chairs
Bernhard Schandl, University of Vienna, Austria
Eugen Mühlvenzl, Austrian Computer Society, Austria
Robert Mosser, University of Vienna, Austria

International Program Committee
Ashraf Aboulnaga, University of Waterloo (Canada)
Sihem Amer Yahia, Yahoo! Research (USA)
Pablo Barceló, Universidad de Chile (Chile)
Zohra Bellahsene, LIRMM CNRS/ University of Montpellier 2 (France)
Veronique Benzaken, Universite Paris Sud 11 (France)
Vanessa Braganholo, Universidade Federal do Rio de Janeiro (Brazil)
Mariano Consens, University of Toronto (Canada)
Irini Fundulaki, University of Edinburgh (UK)
Avigdor Gal, Technion (Israel)
Giorgio Ghelli, Universitá di Pisa (Italy)
Carlos Heuser, Universidade Federal do Rio Grande do Sul (Brazil)

Ela Hunt, ETH Zurich (Switzerland)
Ihab F. Ilyas, University of Waterloo (Canada)
Anastasios Kementsietsidis, University of Edinburgh (UK)
Carl-Christian Kanne, University of Mannheim (Germany)
Mirella Moro, University of California at Riverside (USA)
Giansalvatore Mecca, University of Basilicata (Italy)
Jérôme Siméon, IBM T.J. Watson Research (USA)
Altigran Soares da Silva, Universidade Federal do Amazonas (Brazil)
Yannis Velegrakis, University of Trento (Italy)
Jeffrey Xu Yu, The Chinese University of Hong Kong (China)
Ning Zhang, Oracle Corp. (USA)

External Reviewers
Marcelo Arenas, Pontificia Universidad Católica de Chile (Chile)
Ladjel Bellatreche, Lab. d’Informatique Scientifique et Industrielle (France)
George Beskales, University of Waterloo (Canada)
Luc Bouganim, INRIA Rocquencourt (France)
Bogdan Cautis, INRIA Futurs (France)
James Cheney, University of Edinburgh (UK)
Nina Edelweiss, Universidade Federal do Rio Grande do Sul (Brazil)
Mirian Halfeld Ferrari, Université François-Rabelais de Tours (France)
Renata Galante, Universidade Federal do Rio Grande do Sul (Brazil)
Françoise Gire, Université de Paris 1 (France)
Greg Leighton, University of Calgary (Canada)
Chengfei Liu, Swinburne University of Technology (Australia)
Savvas Makalias, University of Edinburgh (UK)
Viviane Moreira Orengo, Universidade Federal do Rio Grande do Sul (Brazil)
Lu Qin, The Chinese University of Hong Kong (China)
Nikos Rizopoulos, Imperial College London (UK)
Flavio Rizzolo, University of Toronto (Canada)
Mark Roantree, Dublin City University (Ireland)
Kristoffer Rose, IBM T.J. Watson Research (USA)
Stefanie Scherzinger, Saarland University (Germany)
Mohamed A. Soliman, University of Waterloo (Canada)
Nan Tang, The Chinese University of Hong Kong (China)
Junhu Wang, Griffith University, Gold Coast (Australia)
Qiang Wang, University of Waterloo (Canada)

Table of Contents

Invited Talks

Normalization Theory for XML . 1
Leonid Libkin

Dynamic Fusion of Web Data . 14
Erhard Rahm, Andreas Thor, and David Aumueller

XPath Query Answering

XPath Query Satisfiability is in PTIME for Real-World DTDs 17
Manizheh Montazerian, Peter T. Wood, and Seyed R. Mousavi

Fast Answering of XPath Query Workloads on Web Collections 31
Mariano P. Consens and Flavio Rizzolo

XQuery Evaluation and Performance

Let a Single FLWOR Bloom: To Improve XQuery Plan Generation 46
Matthias Brantner, Carl-Christian Kanne, and Guido Moerkotte

Efficient XQuery Evaluation of Grouping Conditions with Duplicate
Removals . 62

Norman May and Guido Moerkotte

On the Effectiveness of Flexible Querying Heuristics for XML Data 77
Zografoula Vagena, Latha Colby, Fatma Özcan, Andrey Balmin, and
Quanzhong Li

XML Updates, Temporal XML Data and
Concurrency

XML Schema Evolution: Incremental Validation and Efficient
Document Adaptation . 92

Giovanna Guerrini, Marco Mesiti, and Matteo Alberto Sorrenti

Managing Branch Versioning in Versioned/Temporal XML
Documents . 107

Luis J. Arévalo Rosado, Antonio Polo Márquez, and
Jorge Mart́ınez Gil

X Table of Contents

SXDGL: Snapshot Based Concurrency Control Protocol for XML
Data . 122

Peter Pleshachkov and Sergei Kuznetcov

Panel

The Generation Y of XML Schema Matching: Panel Description 137
Avigdor Gal

Author Index . 141

Normalization Theory for XML

Leonid Libkin

School of Informatics, University of Edinburgh
libkin@inf.ed.ac.uk

Abstract. Specifications of XML documents typically consist of typing
information (e.g., a DTD), and integrity constraints. Just like relational
schema specifications, not all are good – some are prone to redundancies
and update anomalies. In the relational world we have a well-developed
theory of data design (also known as normalization). A few definitions
of XML normal forms have been proposed, but the main question is why
a particular design is good. In the XML world, we still lack universally
accepted query languages such as relational algebra, or update languages
that let us reason about storage redundancies, lossless decompositions,
and update anomalies. A better approach, therefore, is to come up with
notions of good design based on the intrinsic properties of the model
itself. We present such an approach, based on Shannon’s information
theory, and show how it applies to relational normal forms as well as to
XML design, for both native and relational storage.

1 Introduction

Data organization is one of the most fundamental topics in the study of databases.
In fact, the concept of normalization was proposed by Codd [5] in 1971 – a mere
year after he introduced the relational model. By 1974, the standard 2nd, 3rd,
and Boyce-Codd [6] normal forms (2NF, 3NF, BCNF) had been developed. Bern-
stein’s work on 3NF in the mid 1970s [3] is often viewed as the birth of database
theory. It was understood very early by both database practitioners and theoreti-
cians that having well-organized and well-designed databases is absolutely crucial
for storing, querying, and updating data. Already in the 1980s, the standard nor-
mal forms such as 3NF and BCNF were covered by the majority of database texts.

After three decades of relational dominance, we have seen a new data format
that is extremely widely used and can seriously challenge relational databases.
Thanks to the proliferation of data on the web, much of it now appears in various
markup language formats, of which XML is the most common one. Given the
amount of data available in XML, it is natural to expect that some of XML
designs will exhibit problems similar to those of relational designs, and indeed
this is the case. As a simplest example, we can represent an arbitrary relational
schema R1(A1

1, . . . , A
1
n1

), . . . , R1(Ak
1 , . . . , Ak

nk
) in XML by means of the following

DTD D1:
db → R1, . . . , Rk

Ri → tuple∗i , i ≤ k

D. Barbosa et al. (Eds.): XSym 2007, LNCS 4704, pp. 1–13, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 L. Libkin

that declares Ai
1, . . . , A

i
ni

to be the attributes of tuplei. This way, a bad rela-
tional design translates into a bad XML design, inheriting its problems such as
redundancies and update anomalies. But there are other ways to have designs
prone to update anomalies due to the hierarchical nature of XML. Consider,
for example, the following DTD D2 for storing information about conference
publications:

db → conf ∗

conf → paper∗

paper → author+, title, year

with author, title, and year elements each carrying an attribute with its value.
Now suppose we know – and this is a reasonable assumption – that all papers
in a conference have the same publication year. Then the year information is
redundant, as it is stored repeatedly for all papers in the conference. In addition
it is likely to lead to update problems: if a year needs to be changed, one cannot
do it just once; instead it needs to be changed for every paper in the conference.

To build foundations of good XML design, we need to answer the following
two questions:

1. How do we recognize poor XML designs, and how do we convert them to
good designs? In other words, we want to develop a theory of normalization
for XML.

2. What constitutes a good XML design? In other words, we want to formulate
criteria for good XML designs. In the relation case, one usually appeals to
the intuitive notions of redundancy and update anomaly. But this approach
is problematic in the case of XML for three reasons:
– First, due to the complicated hierarchical structure of XML documents,

it is harder to see when a schema contains redundancies.
– Second, the notion of an update is not nearly as clean as the notion of

relational updates, which makes it hard to say what constitutes an up-
date anomaly (especially in the absence of a universally accepted notion
of XML updates).

– Third, there is no query language with the same yardstick status as rela-
tional algebra has for relational databases. The process of normalization
needs to be lossless (meaning that the original data can be recovered from
a differently designed schema). Thus, the notion of losslessness depends
on a query language.

Thus, we need an approach based on “standards-free” XML concepts, that
is, concepts that will not change even if the W3C comes up with a new query
or update language for XML tomorrow.

Several XML normal forms have been proposed recently, see, e.g., [1,18,17,19,8].
They differ in terms of schema and constraint description, but are based on es-
sentially the same set of transformations, first proposed in [1]. As for the work
on justification of XML normal forms, an approach was proposed in [2] based on
information theory. The idea of the approach is that we measure the amount of
redundancy in a design regardless of any query/update language for a data model.

Normalization Theory for XML 3

This approach, when applied to relational design, confirms our intuitive view of
which designs are good [2,12], and then it can be applied in the case of XML to
reason about XML designs for both native [2] and relational storage [13].

We give a brief survey of these developments. We start with a quick overview
of relational normalization. After that, we introduce the main idea of XML
normalization. We then present the intuition behind the information-theoretic
approach to normalization, and show how it justifies commonly used relational
normal forms. Finally, we analyze the implications of the information-theoretic
approach to XML design.

2 Relational Normalization: A Brief Reminder

We give an overview of two normal forms based on functional dependencies
(FDs): the third normal form 3NF, and the Boyce-Codd normal form BCNF.

If integrity constraints are specified as FDs, the main cause for problems in a
design is a functional dependency X → Y in which the left-hand side X is not a
key. For example, if we have three attributes A, B, C and an FD A → B, then a
given value a of A can be associated with an arbitrary number of values of the
C-attribute, i.e. we can have tuples (a, b, c1), . . . , (a, b, cn) in a relation, but the
value of the B-attribute must be the same in all of them, as it is determined by
a. Hence, we store b unnecessarily many times. Besides, an attempt to update b
leads to problems as it needs to be updated in all of the tuples – otherwise the
database would be inconsistent.

A standard solution in this case is to split a schema into two; in this case,
into AB with a key dependency A → B, and AC. In general, if we have an FD
X → Y , and Z is the set of attributes that are not dependent on X , one splits
the schema XY Z as follows:

πXY

X Y Z

.

πXZ

X Y

.
X Z

.

Thus, a “bad” FD X → Y is translated into a key dependency X → Y in the
relation with XY attributes, and generates a foreign key from the relation with
XZ attributes.

If we have a relational schema given by a set of attributes U and a set of
functional dependencies F , we write F+ for the set of all FDs logically implied
by F . We say that a schema is in BCNF if, for every nontrivial FD X → Y in
F (i.e. Y �⊆ X), it is the case that X is a key; in other words, X → U ∈ F+.

Intuitively, BCNF completely eliminates all the redundancies, as it eliminates
“bad” FDs, and replaces them by keys and foreign keys. It does suffer from one

4 L. Libkin

problem, however. Consider a schema with three attributes A, B, C and two FDs
AB → C and C → A. This schema is not in BCNF, since C is not a key. If we split
it into AC and BC, we lose the FD AB → C. In other words, the decomposition
is not dependency-preserving, and in fact no lossless decomposition of this schema
is. Hence, it is impossible to achieve complete elimination of redundancies and
dependency-preservation at the same time.

If dependency-preservation is important (and it usually is, since it is important
to maintain consistency of the data), one may have to settle for less than BCNF.
Recall that an attribute is called prime if it belongs to a candidate (minimal)
key. Now assume that in a schema we allow two conditions for a nontrivial FD
X → Y : either X is a key (as in the case of BCNF), or every attribute in Y −X
is prime. This is the definition of the third normal form 3NF (actually, this is
not the original definition but a reformulation by [20], which is most commonly
used these days).

A good property of 3NF is that every relational schema admits a lossless
dependency-preserving 3NF decomposition. However, such a decomposition is
not guaranteed to eliminate all the redundancies, but it restricts them to values
of prime attributes. 3NF is a very common database design used in practice [15].

3 Measuring the Amount of Redundancy

Our goal is to provide a way of reasoning about XML designs without appealing
to the notions of queries and updates for XML documents. Before introducing
such techniques for XML, we would like to test them in the well-understood
relational case, where we know what constitutes a good design.

The main idea of our approach, which was first proposed in [2], is as follows.
Given an instance R of a schema with attributes A1, . . . , An and FDs F , we
define a notion of relative information content of a position p in R with respect
to F . It will be denoted by RicR(p|F). Here a position is identified by a tuple
and an attribute. We define it in such a way that

0 ≤ RicR(p|F) ≤ 1,

with RicR(p|F) = 1 saying that position p carries no redundancy whatsoever.
In general, the less the value of RicR(p|F) is, the more redundancy this position
p carries.

This notion is defined using the concept of entropy, more precisely, a certain
conditional entropy. The notion of entropy was used in the past to reason about
database constraints [7,14], but it is a bit of challenge to make it relative to a
set of constraints F . The general idea is as follows. We want to measure the
amount of information in p with respect to an arbitrary set P of positions in the
instance R. This way we account for all possible interactions between p and sets
of positions in R, and then we take the average such amount of information as
the value of RicR(p|F).

To measure the amount of information in p with respect to a set of positions P ,
assume that we lose the value in position p, and that we have a set of k possible

Normalization Theory for XML 5

values v1, . . . , vk to choose this value from. We shall assign a certain probability
πi(P) of picking the right value to each of the vi’s – this is the probability that
vi is a possible value for position p, given the information provided by positions
P . We then look at the entropy of this distribution:

Ric
k
R(p, P |F) =

k∑

i=1

πi(P) log
1

πi(P)
.

Note that this value is dependent on k, the number of possible values to put in
position p.

The entropy tells us how much information is provided by a certain random
event. For example, if there is only one way to replace the missing value by some
vi, then Ric

k
R(p, P |F) = 0, meaning that the information content of position

p is 0, and that the value is redundant as it can be inferred from the rest.
The opposite case when all the values vi’s are possible with equal probabilities
πi(P) = 1

k . This is the the least redundant case, when we can infer nothing
about the value in position p. In this case, Ric

k
R(p, P |F) = log k, the maximum

value of an entropy of a discrete distribution on k elements.
Now our measure (almost) is the average value of Ric

k
R(p, P |F) over all sets

P of positions:

Ric
k
R(p|F) =

1
2N−1

∑

P⊆Positions(R)

Ric
k
R(p, P |F),

where N is the total number of positions in R (i.e. the number of tuples in R
multiplied by the number of attributes in R).

To compute the πi(P)’s, we need the FDs in F . Now suppose that the value
if position p is vi, and we lose the values in positions P . We now look at the
ratio of the number of value assignments to position in P (from the same set
v1, . . . , vk) that make the resulting instance satisfy all the FDs in F . These are,
essentially, the πi(P)’s (in addition one needs to normalize these values to ensure
that

∑
i πi(P) = 1).

We have almost defined our measure; the only problem is that Ric
k
R(p|F)

depends on k. Since the domain of values is assumed to be countably infinite,
as the measure RicR(p|F) we take the limit of the ratio of Ric

k
R(p|F) and the

maximum entropy for a discrete distribution on k values, i.e.

RicR(p|F) = lim
k→∞

Ric
k
R(p|F)

log k
.

It was proved in [2] that this limit always exists (in fact it exists for far more
general classes of constraints than FDs), and thus can be taken to be the rel-
ative information content of a position in an instance with respect to a set of
constraints F .

Some basic facts about the measure RicR(p|F) from [2]:

– The value of RicR(p|F) is independent of the syntactic representation of
the FDs in F . That is, if F and G are two sets of FDs and F+ = G+, then
RicR(p|F) = RicR(p|G).

6 L. Libkin

– 0 ≤ RicR(p|F) ≤ 1.
– If F = ∅, then RicR(p|F) = 1 (if there are no constraints, there is nothing

to tell us that the schema may not be well-designed).

4 Applying the Measure: Relational Designs

We now use the information-theoretic measure to define well-designed schemas.

Definition 1. A relational schema given by a set of FDs F is well-designed iff
RicR(p|F) = 1 for every instance R of the schema and every position p in R.

In other words, the schema is well-designed if no position in any instance of the
schema admits any redundancy.

Theorem 1 (see [2]). A schema given by FDs is well-designed iff it is in
BCNF.

This confirms our intuition that BCNF completely eliminates redundancies. This
result was further extended in [2] to deal with other classes of constraints such as
multi-valued and join dependencies, and justify normal forms such as 4NF [9].

But what about the normal form most commonly used in practice, i.e. 3NF?
The first result looks rather discouraging: 3NF schemas may admit an arbitrar-
ily high amount of redundancy (demonstrated by arbitrarily low values of the
measure).

Proposition 1 (see [11]). For every 0 < ε < 1, one can find a 3NF relational
schema given by a set of FDs F , an instance R of that schema and a position p
in R such that RicR(p|F) < ε.

However, the situation is not as bad as it might seem. First, the result requires
schemas with a large number of attributes. More importantly, it has been known
for a long time [20] that not all 3NF designs are equally good: for some schemas
already in 3NF, better 3NF designs can be obtained by applying the standard
3NF synthesis algorithm [3].

3NF designs guarantee the integrity of the database. One may ask whether
3NF is the best choice of a dependency-preserving normal form. That is, if we
look at all normal forms that guarantee dependency-preservation (hence exclud-
ing BCNF), is it 3NF that has the least amount of redundancy?

The answer to this is positive. Assume that NF is some dependency-preserving
normal form: i.e., every schema admits a lossless dependency-preserving decom-
position into NF . We define the guaranteed information content provided by
NF as the largest number c ∈ [0, 1] such that every schema may be decomposed
into NF in such a way that in all instances R of the decomposed schema and
all positions p, the information content RicR(p|F) is at least c.

If RicR(p|F) ≥ c, then 1 − c is the price of dependency preservation, denoted
by Price(NF): that is, the minimum amount of information content one must
lose due to dependency preservation. The following theorem shows that among
normal forms that guarantee dependency preservation, 3NF is the one with the
least amount of redundancy.

Normalization Theory for XML 7

Theorem 2 (see [12]). Price(3NF) = 1/2. Furthermore, if NF is an arbitrary
dependency-preserving normal form, then Price(NF) ≥ 1/2.

Furthermore, we can analyze “good” 3NF schemas produced by the standard
synthesis algorithm. We refer to them as 3NF+ schemas (they can be syntac-
tically characterized [20], but for our purposes it suffices to think of them as
3NF schemas that cannot be further decomposed using the standard synthesis
algorithm of [3]).

To compare 3NF and 3NF+ designs, we use a new concept of a gain of nor-
malization function. To define it, assume that we have a condition C on schemas
consisting of FDs. We first define the set of possible values of RicR(p|F) for
m-attribute instances R of schemas satisfying C:

POSSC(m) = {RicR(p|F) | R satisfies F, F satisfies C,
R has m attributes}.

We are now interested in the lowest possible value in such a set, i.e. inf POSSC(m)
(typically these sets are dense subsets of intervals (ε, 1], so the infimum – ε –
is well-defined). For two normal forms NF1 and NF2, the gain of normalization
function GainNF1/NF2 : N → R is

GainNF1/NF2(m) =
inf POSSNF1(m)
inf POSSNF2(m)

.

In other words, we measure the ratio of the least amount of information in
instances of NF1- and NF2-schemas, which tells us how much better NF1 can
be compared to NF2.

Let All be the set of all (unnormalized) schemas.

Theorem 3 (see [12]). For every m > 2:

– Gain3NF/All(m) = 2;
– GainBCNF/3NF+(m) = 2;
– Gain3NF+/All

(m) = 2m−2.

Stated informally, an arbitrary 3NF design is at least twice as good as not doing
any normalization at all. Furthermore, good 3NF designs are much better –
in the worst case, they are within a constant factor of two of the best BCNF
designs in terms of the amount of redundancy, while guaranteeing dependency-
preservation.

5 Applying the Measure: XML Designs

The information theoretic measure is very robust. It lets us justify relational
normal forms and go beyond them – we saw how to use it for normal form com-
parison, for example. It was also shown in [2] how to reason about normalization
algorithms using the information-theoretic measure.

8 L. Libkin

We now switch our attention to XML, and show that the same information-
theoretic techniques give us a notion of redundancy-eliminating normal form,
which is an analog of BCNF, as well as a notion of “second best” form, similar
to 3NF. Namely, we shall do the following.

1. We define functional dependencies for XML, for specifying constraints.
2. We then show that the information-theoretic measure applies to XML

documents.
3. We present the notion of a redundancy-eliminating normal form, called XNF,

and sketch an algorithm for converting XML designs into XNF.
4. Finally, we analyze good XML designs assuming XML documents are shred-

ded into relations. Again, we show that XNF eliminates redundancies.

We start with the notion of functional dependency. An analog of a relational
attribute in the case of XML is a path through a DTD, i.e. a sequence of labels
consistent with the DTD of a document. For example, if we represent a relational
schema with attributes ABC and FDs AB → C and C → A by a DTD D:

r → tuple∗ (1)

with tuple having attributes @A, @B, @C, respectively, then the FDs will be
represented as follows:

{r.tuple.@A, r.tuple.@B} → r.tuple.@C
r.tuple.@C → r.tuple.@A

(2)

If we look at the DTD D′ for storing information about conferences and papers:

db → conf ∗

conf → paper∗ (3)

where the element type paper comes with attributes @author, @title, @year, then
we have an FD

db.conf → db.conf.paper.@year (4)

For example, it is natural to expect that all the papers appearing in XSym 2007
will have 2007 as the year of their publication.

The notion of satisfaction of FDs should be intuitively clear from these ex-
amples; the interested reader is referred to [1] for a formal definition that relies
on a notion of tree tuples.

Now we have XML schemas which are given by DTDs D and sets of XML
FDs F . If we have a document T that conforms to D and satisfies constraints in
F , we can define a set of positions in that document as the set of all the places
where an attribute value occurs (more precisely, as sets of pairs (v, @l), where v
is a node identifier in a tree, and @l is an attribute associated with that node).
Once we have the notion of positions, we can define the measure

RicT (p|F)

Normalization Theory for XML 9

in exactly the same way as we defined RicR(p|F), except that the we use the
set of positions in a document T as opposed to the set of positions in relation
R. It satisfies all the same basic properties as RicR(p|F).

We then say that an XML specification (D, F) is well-designed if for every
document T that conforms to D and satisfies F , and every position p in T , we
have RicT (p|F) = 1.

How do we characterize the notion of being well-designed? To see what a
reasonable normal form for XML might be, we analyze the examples shown
above. Given the DTD (1) and FDs (2), let us look at the FD r.tuple.@C →
r.tuple.@A. The left-hand side implies r.tuple.@A, but since @C is not a key, the
left-hand side does not imply r.tuple – indeed, @C does not determine the tuple
uniquely.

Looking at the DTD (3) and the FD (4), we see that the left-hand side of (4)
does not imply db.conf.paper (as this would mean that there was a single paper
published in the proceedings!).

So what is common to these examples? In both cases we have:

– redundancy built into the specification – in the first case it is essentially a
non-BCNF relational design, and in the second case the attribute @year is
stored multiple times;

– an FD of the form X → path.@l such that X → path is not implied by other
FDs.

This was the motivation for the following definition given in [1].

Definition 2. An XML specification (D, F) given by a DTD D and a set F of
FDs is in the XML Normal Form (XNF) iff for every FD X → path.@l implied
by F , it is the case that X → path is also implied by F .

This turns out to be the definition suggested by the information-theoretic
approach.

Theorem 4 (see [2]). An XML specification (D, F) given by a DTD D and a
set F of FDs is well-designed iff it is in XNF.

Two specifications seen earlier are not in XNF. A natural question is then how
to convert them into XNF. Looking at the first example, we have to apply the
usual relational decomposition; for example, a new DTD will look like

r → tuple∗, rnew

rnew → tuple∗
new

where tuple has attributes @A, @C, and tuplenew has attributes @B, @C. We
put in the FD r.tuple.@C → r.tuple, since @C is a key, if tuple contains only
@A and @C as attributes.

In the second example, we do not make a relational split, but instead simply
make @year an attribute of conf, which eliminates the violation of XNF seen
above.

10 L. Libkin

An algorithm for converting a specification into XNF is essentially this:

keep applying the “relational split” and the “hierarchical attribute move”
steps illustrated above.

One can prove [1] that such an application of two basic transformation rules
results in an XNF design.

So far we made an assumption that XML documents are represented as tree-
structures. Very often, however, documents are shredded into relations [16]. One
of the most common techniques for storing XML in relational databases is in-
lining [16]. The idea is that separate relations are created for element types that
appear under a Kleene star, and all other element types are inlined in the rela-
tions corresponding to their parents. Each relation for an element type has an
id attribute that is a key for that relation, as well as a parent id attribute that
is a foreign key pointing for the parent of that element. All the attributes of a
given element type in the DTD become attributes in the relation corresponding
to that element type.

For example, the relational schema for storing XML documents conforming
to the DTD in (3) would be

conf(confID,name)
paper(paperID, confID, title, author, year),

assuming that the conf element type has attribute @name. Keys are underlined.
It is known [13] that XML functional dependencies F are translated into more

general constraints over the inlined relational representation, more precisely,
into a set ΣF of equality-generating dependencies. The inlining mapping also
associates a position δ(p) of the relational representation with each position p in
the XML document.

Let (S, ΣF) be an inlining translation (S, ΣF) of (D, F), where S is a relational
schema, and ΣF is a set of equality-generating dependencies. We say that (D, F)
is well-designed for relational storage iff for every XML tree T conforming to D
and satisfying F and every position p in T , we have RicRT (δ(p)|ΣF) = 1, where
RT is the relational instance of S into which T is transformed.

The next result shows that XNF captures the notion of being well-designed
for relational representation of XML documents as well.

Theorem 5 (see [13]). An XML specification (D, F) is well-designed for rela-
tional storage iff it is in XNF.

Summing up, the following are equivalent for a specification consisting of a DTD
D and a set of XML FDs F :

1. (D, F) is well-designed;
2. (D, F) is well-designed for relational storage;
3. (D, F) is in XNF.

We conclude with a simple condition that guarantees “reasonable” designs from
the point of view of the information-theoretic measure. First, one can show that

Normalization Theory for XML 11

for documents not in XNF, the values of both RicT (p|F) and RicRT (δ(p)|ΣF)
can be arbitrarily low [13].

One type of constraints often used for XML documents is relative: such con-
straints do not hold in the entire document, but only in a part of it restricted to
descendants of some element type [4,10]. In the case of XML FDs, we say that
an FD {q1, . . . , qn} → q is relative if

– for some i ∈ [1, n], the path qi ends with an element type (rather than an
attribute);

– for all j �= i, the paths qj extend qi (in other words, qi is a prefix of qj); and
– for some path p which is a prefix of qi and ends on an element type τ , there

exists an element type τ ′ and a rule τ ′ → e in the DTD such that τ occurs
under the scope of a Kleene star in the regular expression e.

Theorem 6 (see [13]). Let (D, F) be a specification in which every FD violat-
ing the XNF condition is relative. Then for every tree T conforming to D and
satisfying F and every position p in T , we have

RicRT (δ(p)|ΣF) >
1
2
,

where RT is the relational instance into which T is transformed.

Thus, if we design an XML document that might violate XNF but the only
violating FDs are relative, then the redundancy of each position in the relational
storage of the XML document would not be worse than 1

2 . In other words, this
would match the worst-case redundancy of 3NF.

6 Open Problems

The information-theoretic approach has completely clarified the situation with
good relational designs, and best possible XML designs for both native and
relational storage. However, it is not yet entirely clear how to handle non-perfect
designs that do not eliminate all redundancies. We provided an example of a
sufficient condition that matches the bounds on the measure given by 3NF.
However, it is not known whether one can achieve effective normalization with
respect to that condition, nor is it known whether the condition guarantees
dependency-preservation.

The notion of dependency-preservation itself is much less understood for XML.
It was shown in [11] that one can produce XML designs capturing 3NF relational
designs that do not have dependency-preserving BCNF decompositions in a way
that accounts for all the constraints. This needs to be explored further, as it
opens a possibility of storing relations in XML in a way that eliminates re-
dundancies and guarantees dependency-preservation, even if there is no such
relational representation.

Finally, it would be nice to extend the idea of using the information-theoretic
framework for reasoning about and comparing different shredding techniques for
XML documents.

12 L. Libkin

Acknowledgments. This invited talk presents results on the information-
theoretic approach to database design that have been obtained jointly with
Marcelo Arenas and Solmaz Kolahi. I am very greatful to Marcelo and Sol-
maz for collaborating with me, and for their comments on this short survey. I
gratefully acknowledge the support of the European Commission Marie Curie
Excellence grant MEXC-CT-2005-024502 and EPSRC grant E005039.

References

1. Arenas, M., Libkin, L.: A normal form for XML documents. ACM TODS 29, 195–
232 (2004) Extended abstract in PODS’02

2. Arenas, M., Libkin, L.: An information-theoretic approach to normal forms for
relational and XML data. J. ACM 52(2), 246–283 (2005) Extended abstract in
PODS’03

3. Bernstein, P.A.: Synthesizing third normal form relations from functional depen-
dencies. ACM TODS 1(4), 277–298 (1976)

4. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.C.: Keys for XML. In:
WWW 2001, pp. 201–210 (2001)

5. Codd, E.F.: Further normalization of the data base relational model. IBM Research
Report (1971)

6. Codd, E.F.: Recent Investigations in Relational Data Base Systems. IFIP
Congress1974, pp. 1017–1021 (1974)

7. Dalkilic, M., Robertson, E.: Information dependencies. In: PODS’00, pp. 245–253
(2000)

8. Embley, D.W., Mok, W.Y.: Developing XML documents with guaranteed “good”
properties. In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS,
vol. 2224, pp. 426–441. Springer, Heidelberg (2001)

9. Fagin, R.: Multivalued dependencies and a new normal form for relational
databases. ACM TODS 2(3), 262–278 (1977)

10. Fan, W., Libkin, L.: On XML integrity constraints in the presence of DTDs. J.
ACM 49(3), 368–406 (2002)

11. Kolahi, S.: Dependency-preserving normalization of relational and XML data. J.
Comput. Syst. Sci. 73(4), 636–647 (2007)

12. Kolahi, S., Libkin, L.: On redundancy vs dependency preservation in normalization:
an information-theoretic study of 3NF. PODS 2006, 114–123 (2006)

13. Kolahi, S., Libkin, L.: XML design for relational storage. WWW 2007, pp 1083–
1092 (2007)

14. Lee, T.T.: An information-theoretic analysis of relational databases - Part I: Data
dependencies and information metric. IEEE Trans. on Software Engineering 13(10),
1049–1061 (1987)

15. Oracle’s General Database Design FAQ. http://www.orafaq.com/faqdesgn.htm
16. Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D.J., Naughton,

J.F.: Relational databases for querying XML documents: Limitations and oppor-
tunities. In: VLDB, pp. 302–314 (1999)

17. Vincent, M., Liu, J.: Multivalued dependencies and a 4NF for XML. In: Eder, J.,
Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 14–29. Springer, Heidelberg
(2003)

http://www.orafaq.com/faqdesgn.htm

Normalization Theory for XML 13

18. Vincent, M., Liu, J., Liu, C.: Strong functional dependencies and their application
to normal forms in XML. ACM TODS 29(3), 445–462 (2004)

19. Wang, J., Topor, R.: Removing XML data redundancies using functional and
equality-generating dependencies. In: ADC 2005, pp. 65–74 (2005)

20. Zaniolo, C.: A new normal form for the design of relational database schemata.
ACM TODS 7, 489–499 (1982)

D. Barbosa et al. (Eds.): XSym 2007, LNCS 4704, pp. 14–16, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dynamic Fusion of Web Data

Erhard Rahm, Andreas Thor, and David Aumueller

University of Leipzig, Germany
http://dbs.uni-leipzig.de

Abstract. Mashups exemplify a workflow-like approach to dynamically inte-
grate data and services from multiple web sources. Such integration workflows
can build on existing services for web search, entity search, database querying,
and information extraction and thus complement other data integration ap-
proaches. A key challenge is the efficient execution of integration workflows
and their query and matching steps at runtime. We relate mashup data integra-
tion with other approaches, list major challenges, and outline features of a first
prototype design.

1 Introduction

The need to fuse data from multiple web sources is rapidly increasing. This is demon-
strated by the recent proliferation of mashup applications which combine content
from multiple sources and services. Mashup applications are interactive and utilize
flexible Web2.0 user interfaces. Content integration for such mashups is dynamic, i.e.,
it occurs at runtime (on demand) based on specific user input. Driving forces for the
broad adoption of mashups are the availability of several development frameworks
(e.g., Google Web Toolkit), as well as the proliferation of web APIs and information
extraction tools for easy access to many websites, search engines or data feeds. Sev-
eral tools (e.g., Yahoo Pipes, OpenKapow, Mashmaker [2]) also support visual inter-
faces to enable the construction of simple mashups without programming.

The potential for fast development makes mashups a highly attractive approach for
integrating web data from several sources. This is because traditional, schema-
focused data integration approaches (data warehouses, query mediators and – to a
lesser degree – schema-oriented peer data management systems) suffer from a high
upfront development effort for resolving semantic heterogeneity [3]. The effort
needed to determine a global schema and/or precise schema mappings also limits
scalability of schema-focused approaches to many sources. Web search engines, on
the other hand, scale to many web sites but lack sufficient support for structured data
sources of the “hidden web”. Several approaches are being investigated to better pro-
vide integrated access to both unstructured and structured web sources with good
scalability. For example, MetaQuerier provides unified entity search interfaces over
many structured web sources of the hidden web [1]. PayGo aims at providing web-
scale, domain-spanning access to structured sources [4]. It tries to cluster related
schemas together and to improve search results by transforming keyword search que-
ries into structured queries on relevant sources. One aspect missing from such search
approaches is the post-processing of heterogeneous search results, in particular an
online fusion of corresponding (matching) objects.

 Dynamic Fusion of Web Data 15

Mashups demonstrate a more programmatic, workflow-like integration approach,
complementary to the query- and search-based data integration approaches. In fact,
mashups are massively built on the idea of reusing and combining existing services so
that they can also use existing search engines and query services. However, current
mashups are mostly very simple and do not yet exploit the full potential of workflow-
like data integration, e.g. as needed for enterprise applications or to analyze larger sets
of web data. Hence, we see the need for a more powerful workflow-like data fusion
approach which preserves mashup features like Web2.0 GUIs, support for reuse and
fast development.

Providing such an approach incurs several challenges, including the definition of
an architecture supporting mashups for integration at three levels, i.e. data, applica-
tion, and presentation level. Furthermore, a powerful workflow and programming
model is needed supporting the execution of existing web services and generic ser-
vices (or operators) for information extraction, entity search, database queries, and
object matching. The set of usable services and data sources should be listed and
semantically described in a metadata repository similar as proposed in [3]. A limiting
factor for interactive mashups is runtime. Hence, techniques are needed to solve more
complex integration tasks, e.g. involving query, search and object matching of larger
datasets, within a short time.

In the next section we discuss features of a first prototype for workflow-like
dynamic data fusion.

2 Information Fusion with iFuice

We are currently extending our iFuice system for dynamic, mashup-like data fusion
[6] [7]. In [7] we also report on a complex mashup implementation to generate on
demand aggregated (Google Scholar) citation counts for (DBLP) publication lists of
authors and venues. Here we summarize some key features of the iFuice design which
we believe make it suitable for dynamic data fusion within mashup-like applications.

- Workflow-like data integration and operator-based programming model. iFuice
provides a high-level script language to define integration workflows or mashups.
The language consists of powerful generic operators which can be applied to differ-
ent data sources and services. For example, a query operator takes as input the id of
a query service (data source) and a query specification. Most operators are set-
oriented, i.e. they can be applied on a arbitrary set of input objects and generate a set
of result objects. Intermediate results can be stored in variables for use by other op-
erators. There are several operators for set operations (e.g., union, intersection, and
difference) and data transformation (e.g., fuse, aggregate) which can be used to
post-process query results.

- Utilization of instance-level mappings: iFuice utilizes instance-level mappings de-
scribing relationships between instances of entity types. Such mappings can relate
instances of different sources (e.g. corresponding authors or publications of different
bibliographic sources) and often exist already as hyperlinks. In addition, for struc-
tured sources we support instance-level associations between objects of a given
source, e.g. to interrelate an author with her publications. Such instance-level map-
pings can efficiently be used to fuse together corresponding objects, even in the

16 E. Rahm, A. Thor, and D. Aumueller

absence of schema mappings. Materializing such mappings supports their reuse for
different integration workflows and use cases.

- Support for structured and unstructured data sources. By providing appropriate
access services structured as well as unstructured web sources are supported. Each
source may be accessed based on entity ids (e.g. URLs), or using structured queries
or keyword search. Furthermore, we can leverage existing entity search engines [5]
or general search engines to reuse their results aggregated from many other sources.

- Metadata repository: Usable data sources and services are recorded in a repository
and are assigned to entity types (e.g. publication, author). Furthermore, all available
mappings and their semantic mapping type (e.g. publications of authors) are main-
tained. Entity and mapping types are part of a so-called domain model which can be
incrementally extended as needed. A domain model is at a higher abstraction (onto-
logical) level than a global database schema and helps to locate semantically rele-
vant sources and services.

- Iterative query strategies: The use of existing search engines may require several
queries for more complex integration tasks to obtain a sufficient number of relevant
result entities. iFuice therefore allows to iteratively refine query results, where the
execution of subsequent queries may be interactively controlled by the user. The
OCS application [7] uses refining queries to the entity search engine Google Scholar
to obtain citations for a set of publications. Intermediate results are shown to the
user while the system executes additional queries to complete the result. Using such
query strategies allows the quick generation of approximate results which can be
further improved as needed.

- On-the-fly object matching: Dynamic data fusion requires to match corresponding
objects from different sources and fuse their attribute values at run time. Using the
MOMA framework [8] we provide a large spectrum of match strategies from which
one can choose. In particular, the reuse of existing mappings can help to achieve a
fast object matching.

Our investigations on dynamic mashup-like data fusion have just begun and several
difficult research problems still need to be addressed, e.g. the automatic generation of
iterative query strategies and on-the-fly object matching approaches.

References

1. Chang, K.: Toward Large Scale Integration: Building a MetaQuerier over Databases on the
Web. In: Proc. CIDR (2005)

2. Ennals, R., Garofalakis, M.: MashMaker: Mashups for the Masses. In: Proc. Sigmod (2007)
3. Franklin, M., Halevy, A., Maier, D.: From Databases to Dataspaces: a New Abstraction for

Information Management. SIGMOD Record 34(4), 27–33 (2005)
4. Madhavan, J., Jeffery, S.R., Cohen, S., Dong, X., Ko, D., Yu, C., Halevy, A.: Web-scale

Data Integration: You can only afford to Pay As You Go. In: Proc. CIDR (2007)
5. Nie, Z., Wen, J.-R., Ma, W.-Y.: Object-level Vertical Search. In: Proc. CIDR (2007)
6. Rahm, E., Thor, A., Aumueller, D.: Do, H.-H., Golovin, N., Kirsten, T.: iFuice - Informa-

tion Fusion utilizing Instance Correspondences and Peer Mappings. WebDB (2005)
7. Thor, A., Aumueller, D., Rahm, E.: Data Integration Support for Mashups. IIWeb (2007)
8. Thor, A., Rahm, E.: MOMA: - A Mapping-based Object Matching System. CIDR (2007)

XPath Query Satisfiability is in PTIME for

Real-World DTDs

Manizheh Montazerian1, Peter T. Wood1, and Seyed R. Mousavi2

1 Birkbeck, University of London, London WC1E 7HX, UK
{gmont05,ptw}@dcs.bbk.ac.uk

2 Isfahan University of Technology, Isfahan, Iran
srm@cc.iut.ac.ir

Abstract. The problem of XPath query satisfiability under DTDs (Doc-
ument Type Definitions) is to decide, given an XPath query p and a
DTD D, whether or not there is some document valid with respect to D
on which p returns a nonempty result. Recent studies in the literature
have shown the problem to be NP-hard or worse for most fragments of
XPath. However, in this paper we show that the satisfiability problem
is in PTIME for most DTDs used in real-world applications. Firstly, we
report on the details of our investigation of real-world DTDs and define
two properties that they typically satisfy: being duplicate-free and being
covering. Then we concentrate on the satisfiability problem of XPath
queries under such DTDs. We obtain a number of XPath fragments for
which the complexity of the satisfiablity problem reduces to PTIME
when such real-world DTDs are used.

Keywords: XPath, Satisfiability, Document Type Definitions.

1 Introduction

With XML becoming the standard for data exchange, substantial work has been
done on XML query processing and optimization [1,5,7,10,11,12,14]. Much of the
work on query optimization has focused on XPath, since XPath is widely used in
XML-related applications to select sets of nodes from an XML document tree.
Particularly when an XPath query is to be evaluated over documents known to
be valid with respect to a DTD (Document Type Definition), it is possible that
the query might be unsatisfiable, that is, the query always returns an empty
result, no matter what document (valid with respect to the DTD) is queried.
Relatively little work has been done on detecting whether a given XPath query
is satisfiable [2,6,8,9]. However, it is potentially important to detect unsatisfiable
XPath queries and optimize queries to remove expressions that will always return
an empty result set. Indeed, Lakshmanan et al. show that checking satisfiability
as a first step in query processing often yields substantial savings in overall query
processing time [9].

XPath supports a wide variety of operators whose presence or absence affects
the complexity of the satisfiability problem. This has led to the study of vari-
ous XPath fragments that include only certain operators. For example, in this

D. Barbosa et al. (Eds.): XSym 2007, LNCS 4704, pp. 17–30, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 M. Montazerian, P.T. Wood, and S.R. Mousavi

paper we study the fragment with child axis (/), descendant axis (//), quali-
fiers ([]), wildcard (*) and union (∪). As in [10], we denote this fragment by
XP{/,[],∗,//,∪}, indicating the operators permitted. Larger fragments allow oper-
ators such as negation, additional axes such as parent, ancestor and sibling, as
well as comparisons involving data values or node identities.

Example 1. The XMark benchmark project1 is based on an online auction ap-
plication. A fragment of the XMark DTD is given below:

site (regions, categories, catgraph, people, open_auctions,

closed_auctions)

categories (category+)

category (name, description)

description (text | parlist)

open_auctions (open_auction*)

open_auction (initial, reserve?, bidder*, current, privacy?, itemref,

seller, annotation, quantity, type, interval)

with site being the document (top-level) element.The XPath query

/site/open_auctions/open_auction[bidder][reserve]/seller

selects seller nodes that are children of open_auction nodes that have both
a bidder and reserve child. It is easy to see that this query is satisfiable on
documents valid with respect to the above DTD fragment.

In the full DTD, a description can occur as a descendant of more than one
element, so one might write

/site//description[text][parlist]

to retrieve all descriptionnodes that have both text and parlist children. How-
ever, this query is unsatisfiable with respect to the DTD, because a description

can have only one of text or parlist as a child, not both.
Hidders investigates the satisfiability of XPath 2.0 expressions [8]. Various

XPath fragments are classified as either in PTIME or NP-hard. Deciding sat-
isfiability of XPath expressions in the context of a DTD/schema is one of the
open problems mentioned in that paper. This problem is dealt with in [9], which
considers a tree pattern formalism with expressiveness incomparable to XPath.
The language expresses positive tree pattern queries, with data value equality
and inequality along with a node-equality test. It shows that the satisfiability
problem is NP-complete for several restrictions of this pattern language in the
absence of DTDs. It also identifies cases in which satisfiability of tree pattern
queries together with additional constraints, with and without schema, can be
solved in polynomial time and develops algorithms for this purpose.

The most relevant work to ours is [2]. The authors consider a variety of XPath
fragments widely used in practice, and investigate the impact of different XPath
operators on satisfiability analysis. They study the problem for negation-free
1 http://monetdb.cwi.nl/xml/

http://monetdb.cwi.nl/xml/

XPath Query Satisfiability is in PTIME for Real-World DTDs 19

XPath fragments with and without upward axes, recursion and data-value joins,
identifying which factors lead to tractability and which to NP-completeness.
They show that with negation the complexity ranges from PSPACE to EXP-
TIME. When both data values and negation are in place, they find that the
complexity ranges from NEXPTIME to undecidable. These results are extended
in [6], where the satisfiability problem for a variety of XPath fragments with
sibling axes is investigated, in the presence and the absence of DTDs and un-
der various restricted DTDs. In these settings they establish complexity bounds
ranging from NLOGSPACE to undecidable. They show that there are XPath
satisfiability problems that are in PTIME and PSPACE in the absence of sibling
axes, but that become NP-hard and EXPTIME-hard, respectively, when sibling
axes are used instead of the corresponding vertical modalities.

We concentrate on the satisfiability problem under two special classes of DTDs
for a variety of XPath fragments with child axis (/), descendant axis (//), qual-
ifiers ([]), wildcard (*) and union (∪). The two classes of DTDs we consider
are duplicate-free DTDs and covering DTDs. Informally, a duplicate-free DTD
is one in which no regular expression uses the same symbol more than once.
A covering DTD, on the other hand, is one in which each regular expression
R is such that the language L(R) it denotes contains a string in which all the
symbols used in R appear. Formal definitions of these properties are provided
in Section 2.

Example 2. All of the DTD rules for the XMark DTD fragment shown in Ex-
ample 1 are covering, except the following

description (text | parlist)

since the language denoted by (text | parlist) does not contain a sequence
that includes both element names. In addition, all of the rules in the XMark
fragment are duplicate-free. The following is an example of a rule with duplicates,
taken from the XML Schema DTD2 after replacing entity references and ignoring
namespace prefixes

schema ((include | import | redefine | annotation)*,

((simpleType | complexType | element | attribute

| attributeGroup | group | notation), (annotation)*)*)

where the element name annotation is repeated.

The notion of a duplicate-free DTD was introduced in [13] and also used
in [14]. Other authors have also studied and classified DTDs according to vari-
ous properties [3,4]; however, the properties investigated are incomparable with
the notions of covering and duplicate-free. We show in this paper that the
classes of covering and duplicate-free DTDs comprise most real-world DTDs,
i.e. those used in real-world applications. We identify a number of XPath frag-
ments for which the complexity of the satisfiability problem reduces to PTIME

2 http://www.w3.org/2001/XMLSchema.dtd

http://www.w3.org/2001/XMLSchema.dtd

20 M. Montazerian, P.T. Wood, and S.R. Mousavi

when duplicate-free or covering DTDs are used. For example, the fact that sat-
isfiability for the fragment XP{/,[]}is NP-hard in general follows from a result
in [13]. Here we show that it becomes decidable in PTIME for duplicate-free
DTDs, although results from [2] imply that it remains NP-hard for the frag-
ments XP{/,[],∗}and XP{[],//}. More significantly, for covering DTDs we show
that satisfiability for the fragment XP{/,[],∗,//,∪}is in PTIME.

The next section contains the definitions of the various forms of DTD and frag-
ments of XPath we consider in this paper, and reviews the problem of XPath
satisfiability in the presence of DTDs. Section 3 provides the results of our in-
vestigation into the relative frequency of covering and duplicate-free real-world
DTDs. Section 4 presents our complexity results for a number of XPath frag-
ments under duplicate-free and covering DTDs. Finally, Section 5 summarizes
our main results and explains our future plans.

2 Notation and Background Material

In this section, we define DTDs, along with various subclasses of DTDs, the
XPath fragments studied in this paper, and the notion of XPath satisfiability.

Definition 1. A DTD over a finite alphabet Σ is a tuple (D, S0, Σ) where S0 ∈
Σ is the start symbol, and D is a mapping from Σ to a set of regular expressions
over Σ. We say that R is the content model for symbol a and write a → R
(which we also call a rule). From now on, we refer to a DTD by D rather than
(D, S0, Σ) and assume that Σ is the set of symbols appearing in D. In examples,
we will usually drop the arrow symbol from rules.

We will use the DTD syntax for regular expressions, namely, “,” for concatena-
tion, “|” for alternation (disjunction), “∗” for reflexive transitive closure, “+”
for transitive closure and “?” for optional.

Definition 2. Let R be a regular expression and Σ be the set of symbols ap-
pearing in R. We say that R covers Σ, or simply that R is covering, if there is
a string in L(R) that contains every symbol in Σ. A DTD D is called covering
if and only if each content model in D is covering.

Note that a number of common content models used in DTDs are covering. For
example, the content models one gets from the naive representation of relational
data as XML are covering, as are the so-called mixed content models found
in “document-oriented” XML. Examples of covering and non-covering content
models were given in Example 2.

Definition 3. Let R be a regular expression and Σ be the set of symbols ap-
pearing in R. We say that R is duplicate-free if each symbol in Σ occurs exactly
once in R. A DTD D is called duplicate-free if and only if each content model
in D is duplicate-free.

XPath Query Satisfiability is in PTIME for Real-World DTDs 21

Note that the above definition is syntactic. In other words, we can have two
regular expressions which denote the same language such that one expression is
duplicate-free while the other is not. For example, a?, b and (a, b)|b denote the
same language, but only the former expression is duplicate-free. Other examples
of duplicate-free and non-duplicate-free expressions were given in Example 2.

A number of other subclasses of DTDs have been defined in order to study the
complexity of problems such as XPath satisfiability. For example, [2] considers
disjunction-free DTDs, while [3] considers simple regular expressions defined as
follows.

Definition 4. A base symbol is a regular expression a, a? or a∗ where a ∈ Σ;
a factor is of the form e, e∗ or e? where e is a disjunction of base symbols. A
simple regular expression is ε, ∅ or a sequence of factors.

Clearly, a simple regular expression need not be duplicate-free nor covering. On
the other hand, a|(b, c) is duplicate-free but not simple, and (a, b)∗ is cover-
ing but not simple. We conclude that the 3 subclasses of DTDs are pairwise
incomparable.

Definition 5. The syntax of XPath expressions used in this paper is given by
the following grammar:

q → ‘/’ p
p → p ‘/’ p | p ‘//’ p | p ‘∪’ p | p ‘[’ p ‘]’ | ‘∗’ | n | ‘.’

where q is the start symbol, n is an element name and ‘.’ refers to the context
node.

Examples of XPath expressions using the above syntax were given in Example 1.
As mentioned earlier, fragments of XPath are denoted by indicating which op-
erators are supported. So the above fragment is denoted by XP{/,[],∗,//,∪}, since
child axis (/), descendant axis (//), qualifiers ([]), wildcard (*) and union (∪)
are all permitted.

Papers such as [2] use an alternative syntax where ↓ denotes use of the child
axis without specifying an element name. So ↓ in their syntax corresponds to
∗ in ours, with ↓ /a corresponding to a. One consequence of this is that ∗ is
implicitly permitted in all the XPath fragments considered by [2] that include
the child axis, whereas we distinguish explicitly whether or not ∗ is included.

Definition 6. The following notation is adapted from [2]. An XPath expression
p is satisfiable if there is an XML tree T such that the answer of p on T is not
empty, denoted by T |= p. Given a DTD D, we denote the fact that an XML tree
satisfies (or is valid with respect to) D by T |= D. Given a DTD D and a query p,
an XML tree T satisfies p and D, denoted by T |= (p, D), iff T |= p and T |= D.
For an XPath fragment X , the XPath satisfiability problem SAT (X) is, given
a DTD D and a query p in X , is there an XML tree T such that T |= (p, D).

22 M. Montazerian, P.T. Wood, and S.R. Mousavi

3 Real-World DTDs

In this section, we report on our investigation of “real-world” DTDs, i.e. those
frequently used in real applications. For the purpose of this paper, we were
concerned with two features of such DTDs, namely whether or not they were
duplicate-free or covering. We will see that most of the real-world DTDs we
studied have at least one of these two properties.

Table 1. The DTDs and their application domains

DTD Name Application Domain
Oagis Open Applications Group Archives
ODML 1.0 Optimal Design Markup Language
LevelOne HL7 Clinical Document Architecture
Ecoknowmics Economic Knowledge Management
XML Schema XML Schema
HP HL7 Document Architecture
Meerkat Storehouse of News about Technological Developments
OSD Open Software Description
Opml Outline Processing Markup Language
Rss-091 XML Vocabulary for Describing Metadata about Websites
TV-Schedule TV Schedule
Xbel-1.0 XML Bookmarks Exchange Language
XHTML1-strict Extensible HTML version 1.0 Strict
Newspaper Newspaper
DBLP Digital Bibliography Library Project
Music ML Music Digital Library
XMark DTD XML Benchmark
Yahoo Yahoo Auction Data
Reed Courses from Reed College
Nlm Medline National Library of Medicine
SigmodRecord Index of Articles from SIGMOD Record
Ubid UBid Auction Data
Ebay EBay Auction Data
News ML News
PSD Protein Sequence Database
Mondial 3.1 World Geographic Database
321gone Auction

In order to examine the frequency of covering and duplicate-free DTD rules
in real-world applications, we obtained 27 real-world DTDs, 13 using the Google
search engine and 14 from the XML Data Repository3. The DTD names and a
brief description of their application domains are given in Table 1.

We classified the content models into four separate groups as shown in Table 2.
The first and the second columns of Table 2 show, respectively, the DTD names,
and the number of rules in each DTD. The last four columns show, respectively, the
3 http://www.cs.washington.edu/research/xmldatasets

http://www.cs.washington.edu/research/xmldatasets

XPath Query Satisfiability is in PTIME for Real-World DTDs 23

Table 2. The classification of DTD rules

DTD Number Covering Non-covering
Name of Rules Duplicate-free Duplicates Duplicate-free Duplicates

Oagis 617 422 161 16 18

ODML 1.0 85 84 0 1 0

LevelOne 31 29 0 2 0

Ecoknowmics 224 221 1 2 0

XML Schema 26 19 1 6 0

HP 59 59 0 0 0

Meerkat 14 14 0 0 0

OSD 15 14 0 1 0

Opml 15 15 0 0 0

Rss-091 24 24 0 0 0

TV-Schedule 10 10 0 0 0

Xbel-1.0 9 9 0 0 0

XHTML1-strict 77 74 1 2 0

Newspaper 7 7 0 0 0

DBLP 37 37 0 0 0

Music ML 12 9 3 0 0

XMark DTD 77 76 0 1 0

Yahoo 32 32 0 0 0

Reed 16 16 0 0 0

Nlm Medline 41 41 0 0 0

SigmodRecord 11 11 0 0 0

Ubid 32 32 0 0 0

Ebay 32 32 0 0 0

News ML 116 112 0 4 0

PSD 66 64 0 2 0

Mondial 3.1 23 23 0 0 0

321gone 32 32 0 0 0

Total 1740 1518 167 37 18

Percentage 100% 87.3% 9.6% 2.1% 1.0%

Table 3. The number of DTDs (out of 100) in each of the four categories

Duplicate-free Duplicates

Covering 47 8

Non-covering 28 17

number of rules that are (i) covering and duplicate-free, (ii) covering with dupli-
cates, (iii) non-covering but duplicate-free, and (iv) non-covering with duplicates.

A quick glance at Table 2 reveals that the majority of the rules (87.3%) in
these applications possess both the covering and duplicate-free properties. Most
of the rest (11.7%) have exactly one of these properties, and only 1.0% of the
rules are neither covering nor duplicate-free.

24 M. Montazerian, P.T. Wood, and S.R. Mousavi

It should be pointed out that the 3 rules from the Music ML DTD4 that
contain duplicates are as follows:

musicrow ((entrysegment, segment+) | (entrysegment, segment+, text))

entrysegment ((entrypart) | (entrypart, entrypart))

segment ((subsegment) | (subsegment, subsegment))

These rules are not even “unambiguous” as required by the XML specification.
They can, however, easily be rewritten to be unambiguous as follows

musicrow (entrysegment, segment+, text?)

entrysegment (entrypart, entrypart?)

segment (subsegment, subsegment?)

resulting in the first rule becoming duplicate-free as well.
In further experiments, we obtained 73 more DTDs using Google and classified

the content models into the same four groups. There were 3794 rules in total in
these 73 DTDs and the majority of the rules (93.2%) possessed both the covering
and duplicate-free properties. Most of the rest (6.1%) had exactly one of these
properties, and only 0.7% of the rules were neither covering nor duplicate-free.

Because of our assumption that even a single rule that is non-covering (or
contains duplicates) results in the DTD being classified as non-covering (or not
duplicate-free), we need to determine which DTDs, as opposed to which rules,
are covering (duplicate-free). Table 3 classifies the examined 100 DTDs into the
four categories of covering and duplicate-free (top left), covering with duplicates
(top right), non-covering but duplicate-free (bottom left) and non-covering with
duplicates (bottom right). As shown in Table 3, the largest number (47%) of
DTDs possess both properties, with only 17% possessing neither property.

These experiments suggest, as a rule of thumb, that most real-word DTDs
should be covering or duplicate-free. In fact, about 55% of the DTDs examined
in the experiments were covering, and about 62% of the remaining (non-covering)
DTDs (i.e. 28% of the whole) were duplicate-free. That is, 83% of the examined
DTDs possessed at least one of the properties of being covering or duplicate-free.

4 XPath Satisfiability Under Real-World DTDs

In this section, we concentrate on the satisfiablity problem of XPath queries un-
der “real-world” DTDs, i.e. those which are either duplicate-free or covering. We
will see that although the satisfiability problem is NP-complete or worse for many
XPath fragments under general DTDs, it is in PTIME for certain XPath fragments
when the underlying DTDs have the duplicate-free or covering properties.

4.1 XPath Satisfiability Under Duplicate-Free DTDs

Recall that a DTD is duplicate-free if each element name appears at most once in
each content model. The fact that duplicate-free DTDs are easier to analyze was
4 http://xml.coverpages.org/musicML-DTD.txt

http://xml.coverpages.org/musicML-DTD.txt

XPath Query Satisfiability is in PTIME for Real-World DTDs 25

previously noted in [14], where it is shown that deciding containment under a
DTD even for XP{/,[]}is coNP-complete, but that it reduces to PTIME when the
DTD is duplicate-free. Below we show that the analysis of XPath satisfiability
under duplicate-free DTDs is also simpler for certain fragments.

Before doing so, we state the following straightforward result.

Proposition 1. Given a DTD D, deciding whether D is duplicate-free can be
done in PTIME.

Benedickt et al. show that, in general, SAT(XP{/,[],∗}) and SAT(XP{[],//}) are
both NP-hard [2]. In fact, a result in [13] implies that SAT(XP{/,[]}) is also
NP-hard. However, we have the following result for duplicate-free DTDs.

Theorem 1. Under duplicate-free DTDs, SAT(XP{/,[]}) is in PTIME.

Proof. To prove the theorem, we first present two lemmas:

Lemma 1. Let R be a duplicate-free regular expression and C be a nonempty
set of symbols appearing in R. Then there is a string wc in L(R) which covers
all the symbols in C if and only if every subexpression (R1|R2) of R, where both
R1 and R2 contain a symbol in C, appears as a subexpression of (R3)∗ or (R3)+

for some R3.

Proof. It is important to note firstly that R is duplicate-free and that R is
assumed to use every symbol in C. Therefore, each symbol in C appears exactly
once in R.

Assume R contains a subexpression (R1|R2) to which no closure operator
applies, such that R1 contains c1 ∈ C and R2 contains c2 ∈ C. Then each string
in L(R) containing c1 has to exclude c2 and each string in L(R) containing c2

has to exclude c1, which means that no string in L(R) covers C.
Conversely, assume there is no string in L(R) which covers C. Since all the

symbols in C appear in R, there must be a pair of distinct symbols c1 and c2

in C such that there are strings w1 and w2 in L(R) such that c1 (but not c2)
appears in w1 and c2 (but not c1) appears in w2, but no string in L(R) contains
both c1 and c2. Hence there must be a subexpression (R1|R2) in R such that
c1 appears in R1 (or R2) and c2 appears in R2 (respectively R1). Furthermore,
the expression (R1|R2) cannot be subject to a closure operator; otherwise there
would be a string in L(R) containing both c1 and c2. �

Lemma 2. Let p be a two level XPath query in the fragment XP{/,[]}such that
the root vroot has n ≥ 0 leaf children. Then the satisfiability of p under a
duplicate-free DTD D can be decided in PTIME.

Proof. Let Rroot be the regular expression representing the content model in the
DTD D for the root node vroot of p. In the case that more than one child of vroot

has the same label, say b, either the symbol b is subject to some closure operator
in Rroot (i.e. “∗” or “+” applies to b or to a term in which b is contained) or not.
In the former case, vroot can have a b-child (while D-consistent) if, and only if,

26 M. Montazerian, P.T. Wood, and S.R. Mousavi

it can have many of them, and in the latter case all such b-children must map
to the same b-node in any document tree which satisfies D anyway. Therefore,
we only need to check whether L(Rroot) contains a word wc which includes all
of the labels in C (with an arbitrary ordering), where C is the set, as opposed
to the multiset, of labels of the children of vroot.

For each symbol b in C, if there is no symbol b in Rroot, which can be checked
in PTIME, then the answer (to whether L(Rroot) contains wc) is false. Other-
wise, Lemma 1 applies and we only need to check whether Rroot contains some
expression (R1|R2) to which no closure operator applies and such that both R1

and R2 contain some symbol in C. The number of “|” operators in Rroot is
O(|Rroot|) and to obtain each expression (R1|R2) in Rroot requires O(|Rroot|)
time. For each expression (R1|R2) in Rroot, to check whether Ri, i = 1, 2, covers
some symbol in C requires O(|Ri| × |C|) time. �
We now prove the theorem:

Let p be a given XPath query in the fragment XP{/,[]}. For each internal
node v in p, if v has more than one child with the same label, say b, then there
are two possibilites: (i) the symbol b is subject to some closure operators in
the regular expression, say Rv, corresponding to the content model of v in the
DTD (i.e. “∗” or “+” applies to b or to a term in which b is contained), or
(ii) the symbol b is not subject to a closure operator, hence all such b-children
must map to the same b-node in any document tree which satisfies the DTD D
(because D is duplicate-free). The latter case was previously called a functional
constraint in[14] and was shown to be detectable in PTIME. In case(i), there is
no restriction on the number of b-children of label(v) (where label(v) denotes the
label of v) in any document tree which satisfies D, hence such b-children must
not be merged. In case (ii), we merge all such b-children of v, which is done in
PTIME. So we assume in the rest of the proof that case (ii) holds; that is, they
must not be merged. Let SubP (v) denote the two-level subtree of p rooted at v.
This implies that SubP (v) has all the children of v as leaves.

Based on the above terminology and the definition of satisfiablity, p is satisfi-
able if and only if the subtree SubP (v) is satisfiable for each internal node v in
p. Using Lemma 2, to decide whether such a subtree is satisfiable is in PTIME.
On the other hand, there are altogether m subtrees, where m is the number of
internal nodes, that is m = O(|p|). Therefore, to decide whether p is satisfiable
is in PTIME. �
Even if a DTD as a whole is not duplicate-free, the above positive results can be
used. For example, given a DTD D and a query p in XP{/,[]}, if every internal
node in the tree representing p is labelled by an element name whose content
model is duplicate-free, then the satisfiability of p can be determined in PTIME.
This gives us the following.

Corollary 1. Given a query p in XP{/,[]}and a DTD D, SAT(XP{/,[]}) is in
PTIME if each rule in D in which a symbol from p appears is duplicate-free.

Wenowconsiderthesatisfiabilityofsomeother fragmentsofXPathunderduplicate-
free DTDs. The fact that SAT(XP{/,//,∗}) is in PTIME under duplicate-free DTDs

XPath Query Satisfiability is in PTIME for Real-World DTDs 27

follows trivially from a result in [2] showing that this fragment including union is in
PTIME in general. However, we have the following negative results.

Theorem 2. Under duplicate-free DTDs, the following problems are NP-hard:

1. SAT(XP{/,[],∗})
2. SAT(XP{[],//})
3. SAT(XP{/,[],∪})

Proof. (1) Benedikt et al. show in [2] that SAT(XP{/,[],∗}) is NP-hard by re-
duction from the 3SAT problem. Given a well-formed Boolean formula φ =
C1 ∧· · ·∧Cn over variables x1, . . . , xm, they define a DTD D (with start symbol
S) and the following rules:

S → X1, . . . , Xm

Xi → Ti|Fi, for i ∈ [1, m]
Tj → Cj1 , . . . , Cjk

/* all clauses Cji in which xj appears */
Fj → Cj1 , . . . , Cjk

/* all clauses Cji in which xj appears */

They then define a query XP (φ) = /S[∗/ ∗ /C1] · · · [∗/ ∗ /Cn] such that φ is
satisfiable iff (XP (φ), D) is satisfiable. As the DTD rules are duplicate-free, we
can deduce that SAT(XP{/,[],∗}) under duplicate-free DTDs is NP-hard.

(2) The proof is the same as the proof of (1), except that XP (φ) is defined
as XP (φ) = /S[.//C1] · · · [.//Cn].

(3) Using the same approach as (1), Benedikt et al. show in [2] that SAT
(XP{/,[],∪}) is NP-hard. The DTD rules used in the proof are the following:

S → X

X → (X?), (T | F)

and XP (φ) = /S[XP (C1)] · · · [XP (Cn)], where XP (Ci) is defined as follows:

– For each variable xi in φ, XP (xi) = X i/T and XP (x̄i) = X i/F , where X i

is the chain X/ · · ·/X of length i.
– For each clause Cj , XP (Cj) is Cj in which each xi is replaced by XP (xi)

and each x̄i is replaced by XP (x̄i).

As the DTD rules are duplicate-free, SAT(XP{/,[],∪}) under duplicate-free DTDs
is NP-hard. �

4.2 XPath Satisfiability Under Covering DTDs

Recall that the majority of DTDs studied in Section 3 were classified as covering.
In this section we prove that SAT(XP{/,[],∗,//,∪}) is in PTIME under covering
DTDs. We should first point out the following fact which follows directly from
a result in [13].

Proposition 2. Given a DTD D, deciding whether D is covering is NP-complete.

28 M. Montazerian, P.T. Wood, and S.R. Mousavi

However, since we expect query processors to have to deal with relatively few,
known DTDs while answering large numbers of XPath queries, the cost of de-
tecting the covering property will be a one-off cost for each DTD.

Theorem 3. Under covering DTDs, SAT(XP{/,[],∗,//,∪}) is in PTIME.

Proof. We prove this by the same method as Benedikt et al. use in [2], where
they show that SAT(XP{/,[],∗,//,∪}) under disjunction-free DTDs is in PTIME.
Clearly, a disjunction-free DTD is a special case of a covering DTD. It turns out,
however, that the same proof technique can be used, the only substantial differ-
ence being that ∗ is implicitly permitted in all the XPath fragments considered
by [2] that include the child axis, whereas we distinguish explicitly whether or
not ∗ is included. We also need to adapt the proof from [2] to account for the
different syntax for XPath used in that paper.

Let p be a query in (XP{/,[],∗,//,∪}) and D be a covering DTD. We first
construct a DTD digraph G(V, E), with the set V of element names in D. G is
rooted at S0 ∈ V , where S0 is the start symbol of D. For simplicity and without
loss of generality we assume that neither D nor p is empty. Let a and b be two
distinct symbols in V . There is an edge in E from vertex a to vertex b if and
only if b appears in the content model of a in D. We start by compiling the
list L of all sub-queries of p, topologically ordered such that p1 precedes p2 in
L if p1 is a sub-query of p2. For each p′ ∈ L and element name a in D we use
a variable reach(p′, a) to hold the set of all element names reachable from a
via p′ in the DTD graph G. These variables are initially set to ∅, except that
reach(S0, S0) = {S0}. We also use a variable sat(p′, a) to hold the truth value
indicating whether or not p′ is satisfiable at a.

The decision algorithm is outlined as follows5:

1. For each p′ ∈ L (in the order of L) and element name a in D, we compute
reach(p′, a) and sat(p′, a), based on the structure of p′:
(a) p′ = .: then reach(p′, a) = {a};
(b) p′ = l: then reach(p′, a) = {l} if l appears in the content model of a in

D;
(c) p′ = ∗: then reach(p′, a) is the set of element names which appear in the

content model of a;
(d) p′ = ε: then reach(p′, a) is the set of element names reachable from a in

G (ε can only appear as the empty XPath step, as in //);
(e) p′ = p1 ∪ p2: then reach(p′, a) = reach(p1, a) ∪ reach(p2, a);
(f) p′ = p1/p2 : then reach(p′, a) =

⋃
b∈reach(p1,a) reach(p2, b);

In all the cases above, sat(p′, a) = true iff reach(p′, a) �= ∅.

(g) p′ = .[p1]: sat(p′, a) = sat(p1, a), and reach(p′, a) = {a} if sat(p1, a) =
true;

2. Return sat(p, S0), where S0 is the root of G.

5 The ε and ↓∗ used in [2] correspond to our ‘.’ and ε, respectively.

XPath Query Satisfiability is in PTIME for Real-World DTDs 29

Since p[p1] = p/.[p1], the inductive case for p[p1] is reduced to p1/p2 and .[p1].
The algorithm iterates over all sub-queries in L and all element names in

D. Hence, the main loop in the algorithm is executed at most O(|p||D|) times.
Each step in the loop takes at most O(|D|) time. Hence, the worst-case time
complexity is O(|p||D|2).

The proof that the algorithm returns true iff (p, D) is satisfiable follows the
method used in [2]. The same method works because of the fact that since D is
covering, .[q1][q2] · · · [qn], e.g., is satisfiable at an element labelled a if and only
if each of q1, q2, . . . , qn is satisfiable at an element labelled a. This is also true
for duplicate-free DTDs [2], but is not true in general. �

Corollary 2. Given a query p in XP{/,[],∗,//,∪}and a DTD D, SAT(XP{/,[],∗,//})
is in PTIME if each rule in D in which a symbol from p appears is covering.

5 Conclusion and Future Work

This paper was concerned with discovering properties of real-world DTDs and
their impact on the satisfiability problem. The motivation behind this was the
authors’ belief that although common XPath problems are of high complexity,
e.g. NP-hard, in general, real-world applications usually provide simpler struc-
tures under which such otherwise hard problems could be performed in PTIME.

In particular, we examined several real-world DTDs and discovered a new
property, called covering, which most of them preserved. We observed that even
the minority of the examined real DTDs which did not possess the covering
property were duplicate-free. We showed that the satisfiability problem of the
XPath fragment XP{/,[],∗,//,∪}reduces to PTIME when the underlying DTD
has the covering property. We also showed that the satisfiability of the fragment
XP{/,[]}reduces to PTIME when the underlying DTD is duplicate-free. These
problems were previously shown to be NP-hard under general DTDs.

The presented work is just a starting point in the direction of discovering fea-
tures of real-world applications and deriving low-cost algorithms for problems
such as query satisfiability, containment, and minimization. Among possible av-
enues for further research in this regard are the following:

– The experimental results in this paper showed that most of the DTDs clas-
sified as non-covering (respectively having duplicates) were done so because
of only a few rules being non-covering (respectively containing duplicates).
This suggests that one might introduce the concept of locally, vs. globally,
covering (respectively duplicate-free) DTDs. The satisfiability problem un-
der locally-covering (respectively locally duplicate-free) DTDs may still be
in PTIME if the given queries preserve certain features.

– One could investigate PTIME algorithms for XPath containment under cov-
ering and duplicate-free DTDs. Some results for containment of queries in
XP{/,[]}under duplicate-free DTDs are given in [14].

– When examining the DTDs, we noticed that some of the DTD rules are clas-
sified as having duplicates because of patterns such as (a, b)|(a, c, d) where

30 M. Montazerian, P.T. Wood, and S.R. Mousavi

a is duplicated. However, such a pattern is equivalent to a, (b|(c, d)) which
is duplicate-free. Considering such a semantic notion of duplicate-free would
increase the percentage of real-world DTDs classified as duplicate-free.

– We believe that, by combining the methods for covering and duplicate-free
DTDs, SAT(XP{/,[]}) can be decided in PTIME if each rule in a DTD is
either covering or duplicate-free. This would then be applicable to 92 out of
the 100 DTDs covered by our experiments.

References

1. Amer-Yahia, S., Cho, S., Lakshmanan, L.V.S., Srivastava, D.: Tree pattern query
minimization. The VLDB Journal 11, 315–331 (2002)

2. Benedikt, M., Fan, W., Geerts, F.: XPath satisfiability in the presence of DTDs.
Proc. Twenty-fourth ACM Symp. on Principles of Databases Systems (2005) (to
appear in J. ACM)

3. Bex, G.J., Neven, F., Van den Bussche, J.: DTDs versus XML schema: A practical
study. In: Proc. Seventh Int. Workshop on the Web and Databases, pp. 79–84
(2004)

4. Choi, B.: What are real DTDs like? In: Proc. Fifth Int. Workshop on the Web and
Databases, pp. 43–48 (2002)

5. Flesca, S., Furfaro, F., Masciari, E.: On the minimization of XPath queries. In:
Proc. 29th Int. Conf. on Very Large Data Bases, pp. 153–164 (2003)

6. Geerts, F., Fan, W.: Satisfiability of XPath queries with sibling axes. In: Proc. 10th
Int. Workshop on Database Programming Languages, pp. 122–137 (2005)

7. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath
queries. ACM Trans. on Database Syst. 30(2), 444–491 (2005)

8. Hidders, J.: Satisfiability of XPath expressions. In: Proc. 9th Int. Workshop on
Database Programming Languages (September 2003)

9. Lakshmanan, L., Ramesh, G., Wang, H., Zhao, Z.: On testing satisfiability of tree
pattern queries. In: Proc. 30th Int. Conf. on Very Large Data Bases, pp. 120–131
(2004)

10. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath. J.
ACM 51(1), 2–45 (2004)

11. Neven, F., Schwentick, T.: On the complexity of XPath containment in the presence
of disjunction, DTDs, and variables. Logical Methods in Computer Science 2(3)
(2006)

12. Ramanan, P.: Efficient algorithms for minimizing tree pattern queries. In: Proc.
ACM SIGMOD Int. Conf. on Management of Data, pp. 299–309. ACM Press, New
York (2002)

13. Wood, P.T.: Minimising simple XPath expressions. In: Proc. Fourth Int. Workshop
on the Web and Databases, pp. 13–18 (2001)

14. Wood, P.T.: Containment for XPath fragments under DTD constraints. In: Proc.
9th Int. Conf. on Database Theory, pp. 300–314 (2003)

Fast Answering of XPath Query Workloads on

Web Collections

Mariano P. Consens and Flavio Rizzolo

University of Toronto
{consens,flavio}@cs.toronto.edu

Abstract. Several web applications (such as processing RSS feeds or
web service messages) rely on XPath-based data manipulation tools.
Web developers need to use XPath queries effectively on increasingly
larger web collections containing hundreds of thousands of XML docu-
ments. Even when tasks only need to deal with a single document at
a time, developers benefit from understanding the behaviour of XPath
expressions across multiple documents (e.g., what will a query return
when run over the thousands of hourly feeds collected during the last
few months?). Dealing with the (highly variable) structure of such web
collections poses additional challenges.

This paper introduces DescribeX, a powerful framework that is capa-
ble of describing arbitrarily complex XML summaries of web collections,
enabling the efficient evaluation of XPath workloads (supporting all the
axes and language constructs in XPath). Experiments validate that De-
scribeX enables existing document-at-a-time XPath tools to scale up to
multi-gigabyte XML collections.

1 Introduction

Web applications rely heavily on XML tools to manipulate data encoded in
XML. Data can be exchanged, as in web feeds (blogs, news feeds, podcasts) or
via web service messages. Data can also be stored, as in hypertext collections like
Wikipedia. Several XML manipulation tasks (and the tools used to implement
them) process one document at a time, whether the document is an individual
RSS file, a single SOAP message, or a Wikipedia article in XHTML. The vast
majority of software tools utilized in this context rely on XPath as the core di-
alect for XML querying. Hence, web developers make extensive use of embedded
XPath queries for processing XML collections.

A developer working with this type of collection faces several challenges. She
must learn enough about the (semi)structure present in the XML collection to be
able to write meaningful XPath queries. She must also develop an understanding
of how the XPath expressions behave across different documents in the collection.

Understanding the actual structure of a web collection can be a significant
barrier. Some collections (like Wikipedia or personal blogs) do not really have
a schema, or the schema allows most elements to occur almost anywhere. Even
when XML documents are validated against a proper schema, their actual struc-
ture can vary significantly across the collection. This can happen because the

D. Barbosa et al. (Eds.): XSym 2007, LNCS 4704, pp. 31–45, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

32 M.P. Consens and F. Rizzolo

schema is large and only small (possibly disjoint) subsets are actually used (as
happens with industry standard schemas, like IXRetail1), or because schemas
can be arbitrarily composed using open content models (e.g. RSS extensions like
Yahoo Media, podcasts, etc.). In these scenarios, schemas alone are not that
helpful for understanding (nor for optimizing) XPath evaluation.

This paper argues that DescribeX, a tool supporting powerful structural sum-
maries, can help with understanding the (semi)structure of large collections of
XML documents. In fact, DescribeX summaries contribute to significantly speed
up (and scale up) XPath evaluation with existing file at a time tools, enabling
fast exploration of the results of XPath workloads on large collections.

XML structural summaries are graphs representing relationships between sets
in a partition of XML elements. DescribeX summaries have a unique capability:
they are the first ones to describe precisely the structural commonality that
determine each individual set in the partition. DescribeX introduces a language
of axis path regular expressions (AxPREs, for short) to describe the sets.

Most of the existing summary proposals define all sets in the partition using
the same criteria, hence creating homogeneous summaries. These summaries are
based on common element paths (in some cases limited to length k), whether
incoming paths [7,11,17], both incoming and outgoing paths [12,21], or sequence
of outgoing paths (common subtrees) [3]. The few examples of heterogeneous
(adaptive) summaries [5,23] have no capability for describing the partitions,
which are defined according to very simple criteria (e.g., just the incoming paths).

In contrast, DescribeX supports constructing heterogenous summaries where
each set in the partition can be created according to explicit criteria obtained
from an expression in the complete XPath language (all the axes, document
order, use of parenthesis, etc.). Given an arbitrary XPath query, DescribeX can
create a partition defined by an AxPRE that captures exactly the structural
commonality expressed by the query.

This paper presents experimental results that demonstrate that using a sum-
mary created from a given workload can produce query evaluation times orders
of magnitude better than using existing summaries. The experiments also val-
idate that DescribeX summaries allow file at a time XPath processors to be a
competitive alternative (in terms of performance) to DB-like XML query engines
– even on gigabyte sized collections.

Overview and Contributions. The next section walks through a concrete
example to illustrate how DescribeX summaries can help developers understand
the behaviour of XPath queries across large XML collections. The following two
sections present the main technical contributions of the paper. Section 3 pro-
vides an overview of the rich framework for describing summaries underlying
the DescribeX tool (based on the novel technique of applying bisimilarity to ele-
ment neighborhoods described by an AxPRE). Section 4 gives a translation from
XPath expressions into AxPREs, hence supporting the creation of summaries
with nodes that answer complex XPath expressions. The system contributions

1 http://www.nrf-arts.org/

Fast Answering of XPath Query Workloads on Web Collections 33

are presented in Section 5, where the implementation of the DescribeX tool is
outlined, and in Section 6, where experimental results on gigabyte collections
provide evidence of the benefits and scalability of DescribeX. The highlights
are the up to three orders of magnitude speed-ups obtained against variations
of incoming and outgoing path summaries (capturing existing proposals like 1-
index [17], APEX [5], A(k)-index [13], D(k)-index [23], and F+B-Index [12]). We
emphasize that query evaluation times on collections the size of Wikipedia are
rarely reported in the literature. In fact, XML query evaluation systems (and
not just research prototypes) become challenged when working with collections
at this scale. Related work is discussed in Section 7.

2 Motivating Example

Consider a developer who has to implement a web application that retrieves RSS
feeds from several content providers to produce an aggregated meta feed. The
feed may span several days or weeks, and there might be more than one item
per day. Figure 1 shows the instances of two sample RSS feeds represented as
axis graphs.

Fig. 1. Axis graphs of RSS feed samples

An axis graph can display selected binary relations between elements in an
XML document tree, like c, fs , and fc shown in the figure (shorthands for XPath
axes child and following-sibling, and for the derived axis firstchild, respec-
tively). The semantics of these axes is straightforward: the edge from element
6 to 7 labeled fc means that 7 is the first child of 6 in document order, and
the edge from element 18 to 24 labeled fs means that 24 is a following sibling
of 18 in document order. Being binary relations, axes have inverses, e.g., the
inverse of c is p (shorthand for parent) and the inverse of fs is ps (shorthand for
preceding-sibling). These inverses are not shown in the figure.

Using DescribeX, the developer can create a summary descriptor (SD for
short) like the one shown on Figure 2 (a). This label SD, created from the two

34 M.P. Consens and F. Rizzolo

Fig. 2. (a) Label SD, and (b) heterogeneous SD of the RSS feed samples

feeds in Figure 1, partitions the elements in the feeds by element name. For
example, SD node s6 represents all the item elements in the two documents,
{6, 18, 24} (this set is called the extent of s6).

An SD edge is labeled by the axis relation it represents. For instance, edge
(s6, s5) is labeled by c, which means that there is a c axis relation between
elements in the extent of s6 and s5. Figure 2 (a) shows three kinds of edges,
depending on properties of the sets that participate in the axis relation: dashed,
regular, and bold. Dashed edges, like (s6, s5) labeled c, mean that some element
in the extent of s6 has a child in the extent of s5. Regular edges, like (s6, s3)
labeled fc, mean that every element in the extent of s6 has a first child in the
extent of s3. Finally, bold edges, like (s6, s8) labeled c, mean that every element
in the extent of s8 is a child of some element in the extent of s6 and that every
element in the extent of s6 have some child in the extent of s8.

From the label SD the developer learns that items in the collection always
include title and enclosure elements, but they may contain any combination
of description and pubDate elements. However, the label SD does not provide
information on exactly which combinations actually appear. Since the developer
knows that some items have a pubDate, she can write a query to retrieve those
channels that contain such items

Q1 = /rss/channel[item[pubDate]]

The developer can decide to either run Q1 using the current SD or make
DescribeX adapt the current SD to Q1. If she picks the second option, DescribeX
changes the SD by partitioning the channel node s2 in Figure 2 (a), which
represents all channels in the collection, into two channel nodes: one that contains
items with a pubDate and another one that contains items without it (s22 and
s21 in Figure 2 (b), respectively).

Fast Answering of XPath Query Workloads on Web Collections 35

Summaries in DescribeX are defined and manipulated via AxPREs. AxPREs
describe the neighbourhood of the elements in a given extent. A neighbourhood
of an element v for an AxPRE α is the subgraph local to v that matches α. For
instance, the p∗ AxPRE describes the neighbourhood of v containing all label
paths from v to the root, c∗ all label paths from v to the leaves, and fc.ns∗ the
sequence of v’s child labels. AxPREs can also be derived from a query in order to
adapt an SD to it. For example, the [channel].c.c AxPRE of node s21 in Figure
2 (b) was derived from Q1 and describes the neighbourhood of channel elements
with common outgoing label paths of length 2 (more on this in Section 3).

The developer is also interested in items containing both title and enclosure
elements, but she does not know whether such items exist in the collection and,
if they do, how common they are. In addition, she wants those items to be part
of a series (i.e., to belong to channels that contain more than one item element,
as done in feeds for podcasts published daily). Therefore, the developer writes
another query

Q2 = /rss/channel[item/following-sibling::item]

[not(pubDate=../item[1]/pubDate)]/item[title][enclosure]

Q2 contains structural (in black) and non-structural (in grey) XPath con-
structs. The expression that results from removing all non-structural constraints
is called the structural subquery of Q2. A structural subquery provides insight
into the behaviour of the entire query and can be used by DescribeX to change
the SD. It is important to note that “structural” here is used in a broad sense
since some predicates on values can also be considered structural by the user
(see Example 1 in Section 3).

As with Q1, the developer can decide to either evaluate Q2 on the current SD
(the label SD with the refined channel node) or to add Q2 to the workload and
make DescribeX adapt the current SD. Assuming she chooses the second, the
system partitions the item node s6 from Figure 2(a) into the nodes s61 and s62

in Figure 2(b) that describe the structure of the collection w.r.t. the workload
including Q2 and Q1. Note that the extent of node s62 is exactly the answer to
the structural subquery of Q2, and thus a superset of the answer of Q2. The
elements in this extent are called candidate elements. Hence, by adapting the
SD to the structural subquery, DescribeX has considerably reduced the search
space for computing the entire query.

In a document-at-a-time approach to query evaluation, adapting the SD to a
workload can reduce the number of documents on which queries in the workload
need to be evaluated, potentially yielding a significant speedup (see Section 6).
That is, after adapting the SD to a given query Q, DescribeX can evaluate Q
only on those documents (called candidate documents) that are guaranteed to
provide a non-empty answer for the structural subquery of Q. Those candidate
documents that do contain an answer for the entire query are called answer
documents.

36 M.P. Consens and F. Rizzolo

3 The DescribeX Framework

This section introduces the DescribeX framework that provides a powerful lan-
guage based on axis path regular expressions (AxPREs) for describing the par-
titions in an SD. For representing an XML instance, DescribeX uses a labeled
graph model called axis graph.

Definition 1 (Axis Graph). An axis graph A = (Inst , Axes, Label, λ) is
a structure where Inst is a set of nodes, Axes is a set of binary relations
{EA

1 , . . . , EA
n } in Inst × Inst and their inverses, Label is a finite set of node

names, and λ is a function that assigns labels in Label to nodes in Inst. Edges
are labeled by axis names and nodes are labeled by element or attribute names
(including namespaces), or by new labels defined using XPath.

An axis graph is an abstract representation of the XPath data model 2 ex-
tended with edges that represent XPath axis binary relations. Axis graphs can
also include additional axes, such as id-idrefs or firstchild and nextsibling (ab-
breviated ns), that can be expressed in XPath (e.g., fc := child :: ∗[1] and
ns := following-sibling :: ∗[1]).

Example 1. A new node label [mpeg] can be defined in an axis graph by the
XPath expressionenclosure[type="audio/mpeg"], representing enclosure elements
with different types of media as separate nodes.

We introduce next the formal notion of AxPRE that will be used to describe
each set in the partition of elements (i.e. extents) that define an SD.

Definition 2 (Axis Path Regular Expressions). An axis path regular ex-
pression is an expression generated by the grammar

E ←− axis | axis[B(l)] | (E | E) | (E)∗ | E.E | ε

where axis ∈ Axes and ε is the symbol representing the empty expression.

Definition 2 describes the syntax of path regular expressions on the binary re-
lations (labeled edges) of the axis graph including node label tests (B(l) is a
boolean function on a label l ∈ Label that supports more elaborate tests on
labels, beyond just matching). AxPREs can be written using XPath syntax as
well, but the semantics of the constructs are interpreted differently (as in Defi-
nition 3). We refer the reader to [6] for an updated semantics of XPath and to
[15] for conditional XPath.

Having defined the AxPRE language, we introduce next the notion of AxPRE
neighbourhood, which provides a description of the subgraph local to a node in the
axis graph. This AxPRE neighbourhood of a node is computed by intersecting
the automaton of the AxPRE and the axis graph starting from the node (i.e. the
node must intersect the initial state of the automaton). The intersection between
an automaton and a graph is a construction described in [16] (note that in our
case we do not require the expensive simple path semantics).
2 http://www.w3.org/TR/xpath20

Fast Answering of XPath Query Workloads on Web Collections 37

Definition 3 (AxPRE Neighbourhood of v). Let A be an axis graph, v a
node in A, α an AxPRE, and NFA(α) the non-deterministic finite automaton of
α accepting all prefixes. The AxPRE neighbourhood of v for α, denoted Nα(v),
is the subgraph of A product of the intersection between A and NFA(α) such
that v intersects with the initial state of NFA(α).

This approach for defining summaries is based on the intuition that nodes that
have similar neighbourhoods should be grouped together in an extent. The no-
tion of similarity we use is the familiar notion of labeled bisimulation.

Definition 4 (Labeled Bisimulation). Let G1 and G2 be two subgraphs of
an axis graph A, such that AxesG1 ⊆ Axes and AxesG2 ⊆ Axes. A labeled
bisimulation between G1 and G2 is a symmetric relation ≈ such that for all v ∈ G1,
w ∈ G2, EG1

i ∈ AxesG1 , and EG2
i ∈ AxesG2 : if v ≈ w, then λ(v) = λ(w); if v ≈ w,

and 〈v, v′〉 ∈ EG1
i , then 〈w, w′〉 ∈ EG2

i and v′ ≈ w′.

Example 2. Consider neighbourhoods N[item].c|p.c.fs(18) and N[item].c|p.c.fs(24)
in Figure 1, which is computed by the NFA([item].c|p.c.fs) accepting all prefixes
(Definition 3). Both neighbourhoods consist of the subgraph given by the c
edges from 14, c edges from 18 and 24, and the fs edge between 18 and 24.
They differ only in one edge: while N[item].c|p.c.fs(18) contains a p edge from
18, N[item].c|p.c.fs(24) contains a p edge from 24 (p edges are not shown in the
figure). However, according to Definition 4, they are bisimilar and thus nodes 18
and 24 belong to the same extent (that of node s62 in Figure 2 (b)). In contrast,
neighbourhood N[item].c|p.c.fs(6) does not contain an fs edge and thus it is not
bisimilar to either N[item].c|p.c.fs(18) nor N[item].c|p.c.fs(24). Consequently, node
6 is assigned to a different extent (that of node s61 in Figure 2 (b)).

A bisimulation provides a way of computing a double homomorphism between
graphs. The widespread use of bisimulation in summaries is motivated by its
relatively low computational complexity properties. The bisimulation reduction
of a labelled graph can be done in time O(m log m) (where m is the number of
edges in a labelled graph) as shown in [19], or even linearly for acyclic graphs,
as shown in [10]. Using bisimulation also allows us to capture all the existing
bisimulation-based proposals in the literature [8].

Definition 5 (AxPRE Partition). Let A be an axis graph, N ⊆ Inst, and α
an AxPRE. An AxPRE partition of N for α, denoted Pα(N) = {Pi|

⋃
i Pi =

N and
⋂

i Pi = ∅}, is a partition of the nodes in N defined as follows: two
nodes v, w ∈ N belong to the same class Pi ∈ Pα(N) iff there exists a labeled
bisimulation ≈ between Nα(v) and Nα(w) such that v ≈ w.

Definition 6 (Summary Descriptor (SD)). Let A be an axis graph. A sum-
mary descriptor (SD for short) of A is an structure D = (P, G) that consists of
a set of AxPRE partitions P = {Pα1(N), . . . , Pαn(N)}, and a labeled graph G,
called SD graph, representing axis relationships between elements in the equiv-
alence classes of the AxPRE partitions. Each node s in the SD graph has as-
sociated one set in the partition called the extent of s (denoted extent(s)).

38 M.P. Consens and F. Rizzolo

In addition, each SD node is labeled by the AxPRE αi that defines its extent.
Like in the axis graph, SD graph edges are labeled by the axis relation they rep-
resent.

When the extents of all nodes in a SD D are defined with the same AxPRE α
we have an homogeneous SD. In this case we say that D is an α SD. In contrast,
if at least two different nodes are defined with different AxPREs we have an
heterogeneous SD.

4 From XPath to AxPREs

We mentioned in Section 2 that DescribeX can adapt an SD node to an XPath
query Q. This section formalizes how an AxPRE is obtained from Q by using
two derivation functions L and P given in Figure 3.

P (Op(e1, . . . , em)) := ε (1)

P (axis :: l[e1] . . . [em]/rlocpath) := Ax(axis).(P (e1)|. . .|P (em)|P (rlocpath)) (2)

P ((locpath)[e1] . . . [em]/rlocpath) := P (locpath).(P (e1)|. . .|P (em)|P (rlocpath)) (3)

P (locpath1|. . .|locpathm) := (P (locpath1)|. . .|P (locpathm)) (4)

L(rlocpath/axis :: l[e1] . . . [em]) := Ax (axis−1).L(rlocpath)|P (e1)|. . .|P (em) (5)

L(rlocpath/(locpath)[e1] . . . [em]) := L(locpath).L(rlocpath)|P (e1)|. . .|P (em) (6)

L(locpath1|. . .|locpathm) := (L(locpath1)|. . .|L(locpathm)) (7)

Fig. 3. AxPRE derivation functions L and P

Example 3. Consider the following query

Q3 = (rss | RDF)/channel[item[pubDate][not(pubDate=../item[1]/pubDate)]]

Q3 returns all channels that have RDF or rss parents and item children with a
pubDate different from the pubDate of the first item in the channel. Note that
the structural subquery appears in black (the last predicate in grey is not part
of the structural subquery) and that Q3 is in abbreviated syntax (channel and
item for instance, mean child :: channel and child :: item, respectively).

The first rule of Figure 3 that applies is (5), resulting in

Ax(child−1).L((rss|RDF))|P (e1)

where e1 = item[pubDate][not(pubDate = ../item[1]/pubDate)] and Ax is a
function that translates the XPath axis into its AxPRE axis counterpart. In
particular, Ax (axis−1) returns the actual AxPRE inverse (e.g., child−1 is con-
verted into p) and recursive axes are translated to an equivalent Kleene closure
of non-recursive axes (e.g., descendant translates into c∗).

Fast Answering of XPath Query Workloads on Web Collections 39

For expanding P (e1), the first rule invoked is (2) with axis = child, l =
item, an empty rlocpath, and two predicates [pubDate] and [not(pubDate =
../item[1]/pubDate)]. Since the second predicate is a function, it matches rule
(1) and the result of P (not(pubDate = ../item[1]/pubDate)) is ε (Remember
that this predicate is not part of the structural subquery). The application of
rule (2) to the only remaining predicate [pubDate] results in P (e1) = c.(c). Since
c.(c) = c.c, then P (e1) = c.c.

For expanding L((rss|RDF)), the rule that applies is (6) with no predicates
and an empty rlocpath, which simply results in L(rss|RDF). The expansion
continues by invoking rule (7) with locpath1 = rss and locpath2 = RDF . At
this point, the partial expansion of Q3 is

p.(L(rss)|L(RDF))|c.c

Both L(rss) and L(RDF) match rule (5) with axis = child, no predicates and an
empty rlocpath. Therefore, L(rss) = L(RDF) = p, being the resulting AxPRE
p.(p|p)|c.c. Since (p|p) = p, we obtain the simplified AxPRE p.p|c.c. Finally,
the node test of the step corresponding to the answer (channel in this case) is
prefixed as a label predicate to the AxPRE. Therefore, the resulting AxPRE of
query Q3 is

α = [channel].p.p|c.c

Once the query AxPRE α of a given XPath query Q is computed, the next
step in adapting the SD to Q is finding the SD node whose AxPRE α′ contains
α. (The problem of AxPRE containment is related to that of regular expression
containment [14].) After finding the node, DescribeX proceeds to change α′ to α,
which in fact modifies the description of the node and thus the neighbourhood it
summarizes. This entails performing a refinement of the extent of the node. For
instance, in order to adapt the SD of Figure 2 (a) to query Q2 from Section 2,
the extent of s6 was refined into two sets (Figure 2 (b)). An in-depth discussion
of refinements is beyond the scope of this paper and can be found in [8].

5 Document-at-a-time Evaluation Using SDs

In the previous section we have shown how to translate any XPath expression
into an equivalent AxPRE. In this section we will discuss how this AxPRE can
be used to find the SD nodes that contain candidate documents.

DescribeX is implemented in Java using Berkeley DB Java Edition to store and
manage indexed collections (tables). The DescribeX tool can invoke an arbitrary
XPath processor for the evaluation of XPath expressions. Saxon 3 was used for
the experiments reported here.

The DescribeX architecture is tailored to process XML collections one file at
a time, the prevalent data processing model for the Web. Each file is parsed and
processed independently of the other files in the collection. The extent relation is

3 http://saxon.sourceforge.net/

40 M.P. Consens and F. Rizzolo

stored in an indexed table named elemDB that has schema elemDB(SID, docID,
endPos, startPos), where the underlined attributes are the key (also used for
indexing). The elemDB table contains a tuple for each XML element in the collec-
tion. Each SD node is identified by a unique id called SID. Each element belongs
to the extent of a unique SD node, whose SID is stored in the SID attribute.
The attribute docID holds the identifier of the document in which the element
appears. The startPos and endPos are the positions, in the document, where
the element starts and ends, respectively.

Once DescribeX has computed the query AxPRE α of a given XPath query Q
as described in the previous section, it needs to find the SD node whose AxPRE
contains α in order to get the candidate documents for evaluating Q. If there
is an SD node s with AxPRE α, then all docIDs from the ElemDB table that
correspond to s are in fact candidate documents. In contrast, if s has an AxPRE
α′ containing α, DescribeX has two alternatives. One, it can adapt the SD by
refining s from α′ to α and then get the candidate documents as in the previous
case. Two, it can get all docIDs from the ElemDB table that correspond to s
and run the structural subquery of Q on them in order to get the candidates.
Once the candidate documents are found, finding the answer documents entails
running Q on all candidates.

6 Experimental Results

In this section we provide performance results for obtaining candidate and answer
documents for several XPath queries using a variety of SDs. The experiments
demonstrate that DescribeX easily scales up to gigabyte sized XML collections
with response times that are (for the most part) in the order of seconds.

Our experiments were conducted over three collections of documents. The
first two collections (Wiki5 and Wiki45) were created from the Wikipedia XML
Corpus provided in INEX 2006 [9] (using one tenth of the corpus and the entire
corpus, respectively). The third collection (RSS2) was obtained by collecting
RSS feeds from thousands of different sites. The size, number of documents, and
p∗ SD load (creation) times of our test collections are summarized in Table 1.

For measuring document selection times, five separate runs for each query
were conducted starting with a cold Java Virtual Machine (JVM). The best
and worst times were ignored and the reported runtime is the average of the
remaining three times. The experiments were carried out on a Windows XP
Virtual Machine running on a 2.4GHz dual Opteron server, and the JVM was
allocated 1 GB of RAM.

Table 1. Test Collections

Collection MB #docs p∗ Load (sec)
RSS2 210 9600 215
Wiki5 545 30000 567
Wiki45 4500 659388 9700

Fast Answering of XPath Query Workloads on Web Collections 41

Table 2. RSS and Wikipedia Queries

Query XPath Expression
R1 /rss/channel[item[position()>1]]/item[title][enclosure]

[not(pubDate=../item[1]/pubDate)]
R2 /rss/channel/image[width][height][title][description][link][url]

[width/following-sibling::height][width < height]
R3 /rss/channel/item[comments][title][category][description][guid]

[pubDate][link][source][category/following-sibling::category]
[category="EuroAmerica"]

W1 /article/body/template/template[figure/caption][figure/image]
[figure][collectionlink][contains(.,’billion’)]

W2 /article/body/figure[image][caption][caption/collectionlink]
[caption/outsidelink][caption/unknownlink]
[image/following-sibling::caption][contains(.,’February 25’)]

W3 /article/body/section/section/section/section[title][p]
[title/following-sibling::figure/following-sibling::p]
[p/collectionlink][p/unknownlink][contains(.,’Mac OS’)]

Table 2 shows the six queries in our benchmark (the structural subqueries ap-
pear in black). These queries were selected to show the use of different SDs and
how the system scales w.r.t. the number of documents selected. Our benchmark
queries focus on the navigational features of XPath, following the approach of
the MemBeR XQuery Micro-Benchmark [2] (which provide some form of stan-
dardization for studying different aspects of XML data management systems).

Table 3 shows the times for obtaining the candidate and answer documents
for RRS2 (queries Rx) and Wiki45 (queries Wx). The SD AxPRE column
contains the AxPRE of the SD node used to obtain the candidate documents.
The ED# column reports the number of extent documents for each SD node.
Columns CD# and AD# contain the number of candidate and answer docu-
ments respectively. The last row of each query corresponds to the most refined
SD node for the query, which contains only candidate documents. For instance,
for R1 two different refinements of the same SD node are used, the first one
contains 6509 extent documents, and the second one 178. This last refinement
contains only candidate documents. The times reported under column CD(s)
correspond to selecting the candidate documents from the extent documents.
This entails opening every extent document and evaluating the structural sub-
query. However, running the structural subquery is not necessary for the last row
of each query (all extent documents are candidates), thus the reported times are
just for retrieving the pointers to the documents. For instance, obtaining the
candidate documents from query R1 took 45.3 s. using the p∗ SD, and just 0.3
s. using a p∗|c refinement. Finally, the times reported under the AD(s) column
correspond to selecting the answer documents by evaluating the query on the
candidate documents. For instance, selecting the 170 answer documents for R1

42 M.P. Consens and F. Rizzolo

Table 3. Query Results and Times (RSS2 and Wiki45)

Query SD AxPRE ED# CD# AD# CD(s) AD(s)
p∗ 6509 45.3

R1 p∗|c 178 178 170 0.3 3.4

p∗ 3297 34.9
R2 p∗|c∗ 386 352 8 4.7 4.1

p∗|c∗|c.fs 352 0.2

p∗ 6509 45.3
R3 p∗|c∗ 9 3 1 0.8 0.3

p∗|c∗|c.fs 3 0.1

p∗ 82112 1332.0
W1 p∗|c 423 423 132 29.6 4.7

p∗|c∗ 423 0.3

p∗ 115575 1673.0
W2 p∗|c∗ 18 18 2 2.2 0.3

p∗|c∗|c.fs 18 0.2

p∗ 736 23.2
W3 p∗|c 27 1 1 2.8 0.2

p∗|c∗|c.fs∗ 1 0.2

from the 178 candidate documents took 3.4 s. It is easy to see from these results
that the more precise (or refined) the SD node for a query, the smaller the extent
document set and thus the faster DescribeX computes the candidates.

Comparison with summary proposals. The results in Table 3 also provide a
comparison with the summary literature. Proposals like like 1-index [17], APEX
[5], A(k)-index [13], and D(k)-index [23] can provide, at best, a description equiv-
alent to the p∗ SD and thus a similar performance to that reported on the first
row of each query. The p∗|c∗ rows give an indication of the performance provided
by the F+B-Index [12]. DescribeX can create SDs tailored to a workload that
yield query evaluation times one to three orders of magnitude faster than these
proposals (last row of each query). Using a precise SD can have a significant
impact on both candidate and answer documents selection, and thus on overall
query evaluation. Note that no summary in the literature (even recent propos-
als that cluster together nodes with the same subtree structure [3]) can capture
AxPREs like p∗|c∗|c.fs∗.

Comparison with XPath evaluators. Table 4 reports the times for selecting
answer documents using DescribeX, DB2 v9 4, X-Hive/DB 5, XQuest DB 6, and
Saxon (stand-alone, without summaries) on the RSS2 and Wiki5 collections.
Comparative times for Wiki45 are not reported because neither XHive/DB nor

4 http://www-306.ibm.com/software/data/db2/9/
5 http://www.x-hive.com/products/db/
6 http://www.axyana.com/xquest/

Fast Answering of XPath Query Workloads on Web Collections 43

Table 4. Query Evaluation Comparative Times (RSS2 and Wiki5)

Query DescribeX DB2 v9 X-Hive XQuest Saxon
R1 3.7 58.1 8.7 (*) 95
R2 4.3 n/a 7.2 2.9 97
R3 0.4 n/a 8.0 0.9 92

W1 0.2 9.2 27.1 1.2(*) 345
W2 0.1 n/a 34.8 15.7 362
W3 0.1 n/a 37.4 2.5(*) 370

XQuest DB could load the entire collection. DB2 v9 does not support following-
sibling or preceding-sibling XPath axes, so queries R2, R3, W2 and W3 could not
be run on DB2. XQuest DB returned an incorrect answer for some of the queries,
which are marked with an asterisk. DescribeX times span selecting the answer
documents and evaluating the entire query using the most refined SD. These
times are obtained by adding up the times for getting the candidate documents
and the times for evaluating the entire query on them (using Saxon).

The comparative analysis uses two commercial systems, DB2 and X-Hive/DB,
and an open source system, XQuest DB. X-Hive/DB and XQuest DB were se-
lected because of their good performance in published XQuery benchmarks [1].
In addition, a comparison against Saxon stand-alone evaluation (without sum-
maries) is provided. While DescribeX can invoke any XPath processing tool,
Saxon was selected for being a popular processor that can also evaluate XQuery
and XSLT in a file-at-a-time fashion. Keep in mind that the selected DB-like
XML processors may have additional functionality (such as transaction process-
ing capabilities). The comparison aims to show that the DescribeX architecture
with the default implementation (combining summaries with Saxon) can achieve
results competitive with that of XML indexing engines, even with gigabyte sized
collections. In addition, comparing against Saxon provides a performance base
line for a file-at-a-time evaluation when the collection is stored as XML text files
in the file system and no summary structures are available. The results confirm
that, without summaries, Saxon loses by several orders of magnitude.

7 Related Work

The large number of summaries that have been proposed in recent years clearly
establishes the value and usefulness of these structures for describing semistruc-
tured data, assisting with query evaluation, helping to index XML data, and
providing statistics useful in XML query optimization. A more exhaustive com-
parison with related work can be found in [8], including the specific AxPREs
that can be used in DescribeX to express previously proposed summaries.

Most summary proposals in the literature define synopses of predefined sub-
sets of paths in the data. Examples of such summaries are region inclusion graphs
(RIGs) [7], representative objects (ROs)[18], dataguides [11], 1-index, 2-index
and T-index [17], ToXin [24], A(k)-index [13], F+B-Index and F&B-Index [12].

44 M.P. Consens and F. Rizzolo

A few adaptive summaries, like APEX [5] and D(k)-index [23], use dynamic
query workloads to determine the subset of incoming paths to be summarized.
APEX uses an ad-hoc construction mechanism to summarize paths that appear
frequently in a query workload. The workload APEX considers are expressions
containing a number of child axis composition that may be preceded by a descen-
dant axis, without any predicate. However, APEX is tailored to incoming paths
(i.e. SDs defined by the p∗ AxPRE) and does not provide an explicit descrip-
tion of the extents, whereas DescribeX supports arbitrary AxPRE’s. Regarding
summaries that capture document order, the only proposals we are aware of are
the earlier region order graphs (ROGs) [7] and the Skeleton summary [4,3]. Even
though Skeleton uses an entirely different construction approach, its essence can
be captured by the (fc.ns∗)∗ AxPRE.

Other summaries are augmented with statistical information of the instance
for selectivity estimation, including path/branching distribution (XSketch [21]),
value distributions [20], and additional statistical information for approximate
query processing [22].

8 Conclusion and Future Work

The paper introduces DescribeX, a novel framework for describing structural
summaries of XML collections. Summary partitions are defined by AxPRE’s
created from arbitrary XPath queries, supporting fast evaluation of complex
XPath workloads over large web document collections.

Experimental results demonstrate that DescribeX’s powerful mechanism for
adapting summaries to a workload can provide speedups of one to three orders
of magnitude compared to other proposals. The experiments also show that
DescribeX’s file-at-a-time XPath evaluation architecture can be a competitive
alternative (in terms of query response times) to DB-like XML query engines,
even on gigabyte sized collections.

Since this XPath-to-AxPRE syntactic translation can be applied to any XPath
query, it can also be used to translate XPlainer queries [6] to AxPREs. XPlainer
expressions have the same syntax as XPath but a different semanticswhich provide
an explanation in the form of the intermediate nodes, a kind of data provenance of
the answer. Future work includes creating AxPREs for the XPlainer expressions of
a query, so that DescribeX can adaptSDs to accelerate the retrieval of intermediate
nodes. In addition, we plan to study the impact of adjusting the workload (e.g,
by finding frequent patterns), and also how to optimize SD selection given budget
constraints.

References

1. Afanasiev, L., Franceschet, M., Marx, M.: XCheck: a platform for benchmarking
XQuery engines. In: VLDB, pp. 1247–1250 (2006)

2. Afanasiev, L., Manolescu, I., Michiels, P.: MemBeR: A micro-benchmark repository
for XQuery. In: XSym, pp. 144–161 (2005),
http://ilps.science.uva.nl/Resources/MemBeR/

 http://ilps.science.uva.nl/Resources/MemBeR/

Fast Answering of XPath Query Workloads on Web Collections 45

3. Buneman, P., Choi, B., Fan, W., Hutchison, R., Mann, R., Viglas, S.: Vectorizing
and querying large XML repositories. In: ICDE, pp. 261–272 (2005)

4. Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: VLDB,
pp. 141–152 (2003)

5. Chung, C.-W., Min, J.-K., Shim, K.: APEX: An adaptive path index for XML
data. In: SIGMOD, pp. 121–132 (2002)

6. Consens, M.P., Liu, J.W., Rizzolo, F.: XPlainer: Visual explanations of XPath
queries. In: ICDE (2007)

7. Consens, M.P., Milo, T.: Optimizing queries on files. In: SIGMOD, pp. 301–312
(1994)

8. Consens, M.P., Rizzolo, F., Vaisman, A.A.: Exploring the (semi-)structure of XML
web collections. Technical report, University of Toronto - DCS (2007),
http://www.cs.toronto.edu/∼consens/describex/

9. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum (2006)
10. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisimu-

lation equivalence. Theoretical Computer Science 311(1-3), 221–256 (2004)
11. Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimiza-

tion in semistructured databases. In: VLDB, pp. 436–445 (1997)
12. Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for

branching path queries. In: SIGMOD, pp. 133–144 (2002)
13. Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting local similarity for

indexing paths in graph-structured data. In: ICDE, pp. 129–140 (2002)
14. Martens, W., Neven, F., Schwentick, T.: Complexity of decision problems for simple

regular expressions. In: 29th International Symposium on Mathematical Founda-
tions of Computer Science, MFCS, pp. 889–900 (2004)

15. Marx, M.: XPath with conditional axis relations. In: EDBT, pp. 477–494 (2004)
16. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.

SIAM Journal on Computing 24(6), 1235–1258 (1995)
17. Milo, T., Suciu, D.: Index structures for path expressions. In: ICDT, pp. 277–295

(1999)
18. Nestorov, S., Ullman, J.D., Wiener, J.L., Chawathe, S.S.: Representative objects:

Concise representations of semistructured, hierarchial data. In: ICDE, pp. 79–90
(1997)

19. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on
Computing 16(6), 973–989 (1987)

20. Polyzotis, N., Garofalakis, M.N.: XCLUSTER synopses for structured XML con-
tent. In: ICDE (2006)

21. Polyzotis, N., Garofalakis, M.N.: XSKETCH synopses for XML data graphs. ACM
Transactions on Database Systems (TODS) 31(3), 1014–1063 (2006)

22. Polyzotis, N., Garofalakis, M.N., Ioannidis, Y.E.: Approximate XML query an-
swers. In: SIGMOD, pp. 263–274 (2004)

23. Qun, C., Lim, A., Ong, K.W.: D(k)-index: An adaptive structural summary for
graph-structured data. In: SIGMOD, pp. 134–144 (2003)

24. Rizzolo, F., Mendelzon, A.O.: Indexing XML data with ToXin. In: WebDB, pp.
49–54 (2001)

http://www.cs.toronto.edu/~ consens/describex/

Let a Single FLWOR Bloom
(To Improve XQuery Plan Generation)�

Matthias Brantner, Carl-Christian Kanne, and Guido Moerkotte

University of Mannheim
{brantner,kanne,moerkotte}@informatik.uni-mannheim.de

Abstract. To globally optimize execution plans for XQuery expressions, a plan
generator must generate and compare plan alternatives. In proven compiler archi-
tectures, the unit of plan generation is the query block. Fewer query blocks mean
a larger search space for the plan generator and lead to a generally higher quality
of the execution plans. The goal of this paper is to provide a toolkit for developers
of XQuery evaluators to transform XQuery expressions into expressions with as
few query blocks as possible.

Our toolkit takes the form of rewrite rules merging the inner and outer FLWOR
expressions into single FLWORs. We focus on previously unpublished rewrite
rules and on inner FLWORs occurring in the for, let, and return clauses in
the outer FLWOR.

1 Introduction

XQuery evaluators become more and more mature in terms of features and perfor-
mance, and XQuery is being integrated into mainstream DBMS products as a native
language. However, XQuery processing research is still missing some fundamental
tools to facilitate the development of industrial-strength XQuery optimizers. The goal
of this paper is to fill one of these gaps: We provide a rewrite toolkit that allows to reduce
the number of query blocks in a query expression. This widens the search space for plan
generators by making more information visible to a single run of the plan generation
algorithm. Let us begin by stressing the importance of our goal:

Industrial-strength query optimizers proceed in a two-phase manner. In a first phase,
the query is translated into an internal representation, and heuristical rewrite rules are
applied to simplify and normalize the query. In a second phase, a plan generator enu-
merates alternative execution plans, determines their costs, and chooses the optimal
plan. Alternative plans can differ in the access paths used for the basic input sets (e.g.
whether to use an index or not), in the order in which the basic input sets are joined,
and in the position of other operators, such as grouping or sorting.

However, efficient plan generation algorithms cannot take arbitrary query structures
as input. Instead, the unit of plan generation is the query block. Depending on the de-
sign of the query compiler, a query block can be represented in a variety of ways, for
example as a source language construct (SELECT FROM WHERE in SQL, or FLWOR
in XQuery), as a node in an internal graph representation (such as the Query Graph

� This work was supported by the Deutsche Forschungsgemeinschaft under grant MO 507/10-1.

D. Barbosa et al. (Eds.): XSym 2007, LNCS 4704, pp. 46–61, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Let a Single FLWOR Bloom 47

Model QGM [17]), or as an algebraic expression. Some queries exhibit a nested struc-
ture, where a query block references subquery blocks. In such cases, the plan generator
is called in a bottom-up fashion, generating plans for all subquery blocks before the
surrounding query block is processed. It is easy to see that in such cases, the search
space examined by the plan generator is limited, because only locally good solutions
are computed. For globally optimal plans, it is desirable to reduce the number of query
blocks to have more information available in a single run of the plan generator, cre-
ating a larger search space of alternative plans. For this reason, in the first phase of
optimization, queries are rewritten by merging as many query blocks as possible. This
is state-of-the-art for SQL query processing (e.g. [4,10,18]), but not highly developed
for XQuery.

For an industrial-strength approach to XQuery optimization, such a rewriting step to
merge query blocks is particularly necessary:

– In XQuery expressions in real applications, a nested query structure is the norm
rather than an exception. This is due to a number of reasons, including the con-
struction of hierarchical XML results, the absence of a grouping construct, the
generation of queries using visual editors, and, last but not least, the inlining of
(non-recursive) XQuery functions that contain FLWOR expressions.

– XML query processing can benefit from holistic n-way joins [3] which perform
single-pass tree-pattern matching instead of constructing results just using binary
joins. The detection of tree patterns and the decision when to use regular joins
and when to use pattern matching is a global decision during plan generation that
requires access to as much of the query as possible.

An example for a highly nested query (inspired by XMark Query 3) is shown here:

l e t $ a u c t i o n := doc (” a u c t i o n . xml ”) re turn
l e t $euro := f o r $o in $ a u c t i o n / s i t e / o p e n a u c t i o n s / o p e n a u c t i o n

f o r $ i in $ a u c t i o n / s i t e / r e g i o n s / eu rope / i t em / @id
where $o / i t e m r e f / @item eq $ i
re turn $o

f o r $a in $euro
where ze ro−or−one ($a / b i d d e r [1] / i n c r e a s e / t e x t ()) ∗ 2

<= $a / b i d d e r [l a s t ()] / i n c r e a s e / t e x t ()
re turn

f o r $p in $ a u c t i o n / s i t e / p e o p l e / p e r s o n [p r o f i l e / @income > 5000]
f o r $w in $p / wa tches / watch
where $a / @id = $w / @ open auc t ion
re turn <a u c t i o n i d =”{$a / @id}”>

<i n c r e a s e f i r s t =”{$a / b i d d e r [1] / i n c r e a s e / t e x t ()} ”
l a s t =”{$a / b i d d e r [l a s t ()] / i n c r e a s e / t e x t ()}”/ >

<watched by i d =”{$p / @id}”/>
</ a u c t i o n >

The query body is constructed of four FLWOR expressions, three of which are nested
inside other FLWORs. However, these are only the explicit FLWOR blocks. Depending
on the compiler design, the number of nested query blocks may be even deeper. For
example, with a plan generator that focuses on purely structural tree-pattern matching,
nested value-based predicates such as profile/@income > 5000may be separate
query blocks.

Without further processing, such a query is optimized using several runs of the plan
generation algorithm, where each plan for a FLWOR expression is used in the plan for

48 M. Brantner, C.-C. Kanne, and G. Moerkotte

the surrounding FLWOR. This separate optimization of subqueries impedes the discov-
ery of good overall execution plans. This is demonstrated by our example, in which
there are two value-based joins, one joining the Open Auctions to the European Items,
and one joining the Open Auctions to the Persons with an income higher than 5000.
However, the join conditions in the where clauses are in different FLWORs, prohibit-
ing the plan generator to see both of the joins and optimize their order. Join order opti-
mization is a cornerstone of efficient relational query processing and just as important
in XQuery processing [6].

As in many other cases, the nested structure of the query is not required to obtain
the query result, but is used because this way, the query is simpler to write. In fact, the
whole query above can be formulated using a single FLWOR block. One alternative
to do so is shown below, with the results of each processing step bound to a separate
variable:

l e t $ a u c t i o n := doc (” a u c t i o n . xml ”) , $x32 := $ a u c t i o n / s i t e
f o r $o in $x32 , $x13 in $o / o p e n a u c t i o n s , $a in $x13 / o p e n a u c t i o n
f o r $ i in $x32 , $x15 in $ i / r e g i o n s , $x16 in $x15 / eu rope
f o r $x17 in $x16 / i tem , $x18 in $x17 / @id
l e t $x4 := $a / i t e m r e f , $x19 := $x4 / @item
l e t $x33 := $a / b i d d e r [1] , $x34 := $x33 / i n c r e a s e , $x35 := $x34 / t e x t ()
l e t $x36 := $a / b i d d e r [l a s t ()] , $x37 := $x36 / i n c r e a s e , $x38 := $x37 / t e x t ()
l e t $x39 := $a / @id
f o r $p in $x32 , $x20 in $p / peop le , $x21 in $x20 / p e r s o n
f o r $w in $x21 / watches , $x22 in $w / watch
l e t $x8 := $x21 / @id , $x10 := $x22 / @ open auc t ion
l e t $x13 := $x21 / p r o f i l e , $x27 := $x13 / @income
f o r $x1 in <a u c t i o n i d =”{$x39}”>

<i n c r e a s e f i r s t =”{$x35}” l a s t =”{$x38}”/>
<watched by i d =”{$x8}”/>

</ a u c t i o n >
where ze ro−or−one ($x35) ∗ 2 <= $x38 and $x39 = $x10

and $x27 > 5000 and $x19 eq $x18
re turn $x1

While this form of the query is less readable and more difficult to write, it is easier
to optimize because all the basic operations, intermediate results, input sets, and their
dependencies are uniformly represented in a single, top-level FLWOR construct.

The goal of this paper is to provide a toolkit for developers of XQuery evaluators to
transform XQuery expressions into expressions with as few query blocks as possible.
This toolkit takes the form of rewrite rules merging the inner and outer FLWOR ex-
pressions into single FLWORs. These unnesting rules are supplemented by some help-
ful normalization rewrites. We have chosen to present our rules using regular XQuery
syntax because other representations (such as QGM or algebraic expressions) are less
universal and would be more difficult to adapt to different evaluators. We do not use
the XQuery Core sublanguage because it does not have a query block construct suitable
for plan generation. It is, instead, inherently nested, even for quite simple XQuery ex-
pressions. Due to space constraints, we limit our presentation to previously unpublished
rewrite rules and to inner FLWORs occurring in the for, let, and return clauses
in the outer FLWOR. More rewrite rules, including rules for order by clauses and
positional variables, can be found in the extended version of this paper [2].

The remainder of this paper is structured as follows: We begin with a discussion of
related work in Section 2 and give an overview of the rewrite toolkit in Section 3. The
main Sections 4 and 5 present normalization and FLWOR merging rules, respectively.

Let a Single FLWOR Bloom 49

We finish with a short evaluation (see Sec. 6), demonstrating the effect of our rules
when generating execution plans.

2 Related Work

Michiels et al. [16] discuss rewrite rules on two levels. Starting from expressions in
XQuery Core, they propose to first rewrite them into normal forms (still in XQuery
Core) that make the subsequent stages robust against different syntactic formulations of
the same query, and to support tree-pattern detection. They also simplify the query by
removing unnecessary constructs introduced by Core normalization. Some of these sim-
plification rewrites could be incorporated into our toolkit. The rewritten query is then
translated into an algebra that includes a tree-pattern matching operator. These alge-
braic expressions are then rewritten using algebraic equivalences in order to merge sim-
ple path-navigation operators into holistic tree-pattern matching operators. The rewrite
rules on the algebraic level are orthogonal to the ones presented in our toolkit and can
be used by a plan generator to create execution plans based on tree-pattern matching.

The very thorough paper by Hidders et al. [5] has a similar aim, but directly translates
a fragment of XQuery into tree patterns without an intermediate algebraic phase. In a
first phase, the queries are annotated with properties such as result cardinality, ordering,
and occurrence of duplicates. These properties are then used to control a rewriting of the
query into the Tree Pattern Normal Form (TPNF), which is always possible for the lan-
guage fragment under consideration. For TPNF, a direct mapping onto tree patterns is
then described. Unfortunately, the language fragment does not cover important XQuery
constructs, such as value-based predicates. Another problem is that the rewrite rules
are based on XQuery Core, which is unsuitable as a plan generator input, for example
because the absence of a where clause makes it difficult to identify applicable join
conditions. However, the property annotations are not only useful for TPNF rewriting
and can be used when implementing our rewrite toolkit. Further, the TPNF technique
may be used by plan generators to identify parts of the query that can be evaluated using
pattern matching.

May et al. [15] have presented unnesting strategies for XQuery. Their approach is
based on algebraic equivalences to be applied after translation of XQuery into the NAL
algebra of the Natix system. The main focus of that work is unnesting of selection pred-
icates which correspond to where clauses on the source level. The paper also discusses
unnesting the subscripts of map operators, which on source level corresponds to let
clauses. However, the rules are exclusively for the conversion of implicit grouping into
explicit grouping operators, and not for the general unnesting of let. Translated into
the source form, the presented rewrite rules are complementary to the rules discussed
in this paper.

3 Overview

The overall goal of this paper is to flatten an XQuery expression, i.e. merge as many
query blocks (i.e. FLWOR expressions) as possible. To achieve this goal, we basically

50 M. Brantner, C.-C. Kanne, and G. Moerkotte

Normalization

Return
Rewrites
(Figure 2)

Path Normalization

Path Extraction
and Tailoring

(Figure 3)

Predicate
Normalization

(Figure 4)
Factorization For-/Let Rewrites

(Figures 5 & 6)

Fig. 1. Processing model

proceed in two phases: (1) Normalization and (2) FLWOR Merging. Fig. 1 gives an
overview of our processing model.

In both phases, we apply a set of rules based on XQuery syntax on a query. A separate
figure presents one set of rules for each normalization and rewriting step. The Overview
Figure 1 contains references to each of them.

Normalization. Comprises two major subtasks:

1. All ExprSingle expressions1 from the return clause are moved to the expres-
sion creating the binding sequence of a new for expression.

2. Path expressions are normalized (as far as possible). In particular, (1) all path ex-
pressions not directly associated with a for clause are bound to variables using
let, (2) path expressions are taken to single steps, (3) predicates are moved into
the where clause, and (4) common location steps are factorized.

FLWOR Merging. Starting from this normalized form, we remove as many query
blocks (FLWOR expressions) as possible. Specifically, we present rewrite rules that
eliminate or merge inner FLWORs occurring in the for or let clause, respectively.

Notation. Our rewrite rules are formulated using XQuery syntax [8]. However, to sim-
plify the presentation, we use the following abbreviations for frequently used clauses:

ForOrLetClause := ForClause | LetClause
ForOrLetClauses := ForOrLetClause∗

Moreover, we assume that all variable names are unambiguous. Since we sometimes
introduce new variables or change the bindings of existing ones, we introduce a notation
for variable substitution: Expr[$x2 ← $x1] denotes Expr with all free occurrences of
$x2 replaced by $x1.

Running Example. We illustrate the application of our rules on the query from the
introduction. Applying our rules to the example query yields a query which has a single
FLWOR block.

In practice, this query could well be the result of an inlined XQuery function. XQuery
functions are often used as views to increase data independence, or simply to make
queries more readable, similar to views in SQL. In our case, the sequence bound to
$euro could be an inlined function to retrieve European Auctions, whereas the bot-
tommost FLWOR expression could be a function to retrieve all watchers for a given

1 Note that ExprSingle is the expression produced by the grammar rules from [8].

Let a Single FLWOR Bloom 51

auction. The results of these functions are joined using the surrounding FLWOR block.
In such a context, the application of our rewrite rules can also be described as view
merging, allowing the plan generator to optimize join orders beyond view borders.

4 Normalization

Normalization does not decrease the FLWOR nesting level of a query. Instead, it trans-
forms the query such that the unnesting rewrite rules can still be applied in case of
minor syntactical variations. In addition to this preparatory character, normalization
also directly helps to achieve our ultimate goal of preparing queries for plan generation:
XQuery allows several different ways of formulating predicates (e.g. the where clause
and XPath predicates). However, the plan generator requires a single unified formula-
tion of all the constraints on all the variables in the currently considered query block to
systematically explore the search space of alternative plans. Execution plan alternatives
for value-based predicates include, but are not limited to, the placement of selection
operators, the use of joins, and index selection. Which of these alternatives is used, and
in which order the different predicates of a query are evaluated, should not depend on
the nesting level or the placement of the predicates. This robustness is achieved by our
normalization phase.

Normalization proceeds in several consecutive steps, as shown in in Fig. 1. We first
enforce a simple form for all return clauses before we break down complex location
paths into primitives, with an emphasis on predicate normalization. Finally, we elimi-
nate common subexpressions.

4.1 Return Normalization

In order to allow a uniform treatment of nested expressions in return and let
clauses, we move all ExprSingle expressions from return clauses to let clauses
(see Rewrite 1). This way, we can treat the unnesting of return and let uniformly
and can always assume a return clause that consists of a single variable reference.

Other than normalizing the return clause, we can further prepare optimization
by converting the new let clause into a for clause (see Rewrite 2). This is possible

ForOrLetClauses
WhereClause?
OrderByClause?
return ExprSingle1

→

ForOrLetClauses
let $x1 := ExprSingle1
WhereClause?
OrderByClause?
return $x1

(1)

ForOrLetClauses1
let $x1 := ExprSingle1
ForOrLetClauses2
WhereClause?
OrderByClause?
return $x1

→

ForOrLetClauses1
for $x1 in ExprSingle1
ForOrLetClauses2
WhereClause?
OrderByClause?
return $x1

(2)

Condition: There are no other occurrences of $x1.

Fig. 2. Return rewrites

52 M. Brantner, C.-C. Kanne, and G. Moerkotte

because on the right-hand side, the concatenation semantics of FLWOR blocks reestab-
lishes the same result sequence as on the left-hand side of the rewrite, as long as $x1 is
used nowhere but in the return clause.

Turning let into for expressions allows a significantly larger range of alterna-
tives for plan generation. Evaluation of for clauses can be done in an iterative manner,
generating the items of the binding sequence one by one, instead of computing and ma-
terializing the whole sequence at once. This allows efficient techniques such as pipelin-
ing and is the preferred style of implementation in database runtime engines [11].

Running Example. Applying thereturn elimination andlet transformation rewrites
(1 and 2) to the return expressions of our example query results in the following:

l e t $ a u c t i o n := doc (” a u c t i o n . xml ”)
f o r $x1 in l e t $euro := f o r $o in $ a u c t i o n / s i t e / o p e n a u c t i o n s / o p e n a u c t i o n

f o r $ i in $ a u c t i o n / s i t e / r e g i o n s / eu rope / i t em / @id
where $o / i t e m r e f / @item eq $ i
re turn $o

f o r $a in $euro
f o r $x2 in f o r $p in $ a u c t i o n / s i t e / p e o p l e / p e r s o n [p r o f i l e / @income > 5000]

f o r $w in $p / wa tches / watch
f o r $x3 in <a u c t i o n i d =”{$a / @id}”>

<i n c r e a s e f i r s t =”{$a / b i d d e r [1] / i n c r e a s e / t e x t ()} ”
l a s t =”{$a / b i d d e r [l a s t ()] / i n c r e a s e / t e x t ()}”/ >

<watched by i d =”{$p / @id}”/>
</ a u c t i o n >

where $a / @id = $w / @ open auc t ion
re turn $x3

where ze ro−or−one ($a / b i d d e r [1] / i n c r e a s e / t e x t ()) ∗ 2
<= $a / b i d d e r [l a s t ()] / i n c r e a s e / t e x t ()

re turn $x2
re turn $x1

4.2 Path Normalization

Path expressions are a crucial performance factor for the evaluation of almost every
XQuery query. For efficiently evaluating path expressions, the plan generator makes
cost-based decisions on algorithms that should be used to evaluate them. For example,
an optimizer decides whether a holistic approach (e.g. [3,14]) for evaluating multiple
path expressions is superior to a fine granular approach that evaluates single steps indi-
vidually (e.g. [7,12]), probably with the help of an index. The plan generator requires
a canonical form of the path expressions to make such decisions. Besides separating
each processing step for plan generation, cutting path expressions involves two other
advantages:

– It allows to move location step predicates from the middle of location paths into the
where clause.

– Common subexpression elimination (see below) can be done on the granularity of
steps.

Path Tailoring. In order to separate each processing step, we first extract all path
expressions from the query which are not already binding expressions of for or let,

Let a Single FLWOR Bloom 53

for $x in StepExpr/PathExpr → for $x1 in StepExpr
for $x2 in $x1/PathExpr

(3)

Condition: StepExpr must not produce duplicates.

for $x in StepExpr/PathExpr → let $x1 := StepExpr
for $x2 in $x1/PathExpr

(4)

let $x := StepExpr/PathExpr → let $x1 := StepExpr
let $x2 := $x1/PathExpr

(5)

Fig. 3. Path tailoring rewrites

and bind them to new let variables. We keep path expressions in for clauses because
they need a different treatment in our predicate rewrites below.

Having extracted all path expressions, we cut them up into single location steps (see
Fig. 3 for rewriting rules). Again to facilitate iterator-based evaluation, we attempt to
avoid let clauses when possible (3 and 4) while breaking up path expressions in for
clauses. Without further refinements, we can only cut those steps that do not produce
duplicates (see [5,13]). Of course, location steps assigned to a let variable remain in
a let binding (5).

Predicate Normalization. The plan generator not only decides on the path evaluation
algorithms and the order of joins based on structural predicates, but also on the order
of regular, value-based joins and selections. Moving all non-structural predicates into
the where clause makes such join and selection predicates explicitly available in a
uniform manner. This allows a search space of plans that is robust against the syntactical
placement of the predicate. Further, a unified where also allows predicate processing,
which includes, but is not limited to, the inference of new predicates and the elimination
of redundant ones.

In Fig. 4, we present rules that get predicate expressions of location steps and move
them into the where clause of the surrounding FLWOR block. For each extracted pred-
icate expression, we have to set the context to the context defined by the according step.
For example, if we moveExpr1 from a location step predicate into a where clause (see
Rule 6), we have to guarantee that all context accesses are performed with respect to $x1,
which is why we prepend $x1 to the predicate expression. Similarly, we can get compar-
ison expressions that contain calls to the context position of a location step by creating a
positional variable using theforVarRefatVarRef syntax and replacing accesses to
the context position with the variable (see Rule 9). This is not strictly possible in XQuery
syntax, but easily implemented in most evaluators because the context position is mod-
eled as a special variable anyway. Our choice of variable name ($fs : position) follows
the XQuery Formal Semantics, which also replaces context position by a special vari-
able. Further, reverse axis steps cannot be handled this way, because the context position
numbering is different from the order of the result sequence2.

Note that for the sake of brevity, we assume that there is always a where clause in
the outer expression. We treat outer FLWORs without a where clause as if there was a
where true clause.

2 If the rewrite is not done on source level, the internal representation may have a suitable special
variable to bind for reverse axis numbering, making our rewrite possible again.

54 M. Brantner, C.-C. Kanne, and G. Moerkotte

ForOrLetClauses1
for $x1 in StepExpr[Expr1]
ForOrLetClauses2
where Expr2
OrderByClause?
return ExprSingle1

→

ForOrLetClauses1
for $x1 in StepExpr
ForOrLetClauses2
where fn : boolean($x1/(Expr1)) and Expr2
OrderByClause?
return ExprSingle1

(6)

Condition: The value of Expr1 must not depend on the context position or context size.

ForOrLetClauses1
let $x1 := StepExpr[Expr1]
ForOrLetClauses2
where Expr2
OrderByClause?
return ExprSingle1

→

ForOrLetClauses1
let $x1 := StepExpr
ForOrLetClauses2
where fn : boolean(Expr1) and Expr2
OrderByClause?
return ExprSingle1

(7)

Condition: The value of Expr1 must not depend on the focus (context item, context position, or context size).

ForOrLetClauses1
for $x1 in StepExpr[Expr1 and Expr2]
ForOrLetClauses2
where Expr3
OrderByClause?
return ExprSingle1

→

ForOrLetClauses1
for $x1 in StepExpr[Expr2]
ForOrLetClauses2
where fn : boolean($x1/(Expr1)) and Expr3
OrderByClause?
return ExprSingle1

(8)

Condition: The value of Expr1 must not depend on the context position or context size.

ForOrLetClauses1
for $x1 in StepExpr[Expr1 and Expr2]
ForOrLetClauses2
where Expr3
OrderByClause?
return ExprSingle1

→

ForOrLetClauses1
for $x1 at $y1 in StepExpr[Expr2]
ForOrLetClauses2
where Expr′

1 and Expr3
OrderByClause?
return ExprSingle1

(9)

Conditions: The value of Expr1 depends on the context position, but not the context size. Expr′
1 :=

Expr1[$fs : position ← $y1] and StepExpr must not consist of a reverse axis step (see text).

Fig. 4. Predicate normalization rewrites

Common Path Elimination. To avoid redundant evaluation, we eliminate common
paths, binding them to new for or let variables as needed. For space reasons, we do
not present rules for eliminating common paths here but refer to our technical report [2].
Moreover, we refer to [1] for algorithms on subexpression elimination.

Running Example. In the following, we present the query that is obtained by applying
normalization, i.e. path extraction, path tailoring, predicate normalization, and common
path elimination, to our example query.

l e t $ a u c t i o n := doc (” a u c t i o n . xml ”)
l e t $x32 := $ a u c t i o n / s i t e
f o r $x1 in l e t $euro := f o r $o in $x32 , $x13 in $o / o p e n a u c t i o n s

f o r $x14 in $x13 / o p e n a u c t i o n , $ i in $x32 , $x15 in $ i / r e g i o n s
f o r $x16 in $x15 / europe , $x17 in $x16 / i tem , $x18 in $x17 / @id
l e t $x4 := $x14 / i t e m r e f , $x19 := $x4 / @item
where $x19 eq $x18
re turn $x14

f o r $a in $euro
l e t $x33 := $a / b i d d e r [1] , $x34 := $x33 / i n c r e a s e . $x35 := $x34 / t e x t ()
l e t $x36 := $a / b i d d e r [l a s t ()] , $x37 := $x36 / i n c r e a s e , $x38 := $x37 / t e x t ()
l e t $x39 := $a / @id
f o r $x2 in f o r $p in $x32 , $x20 in $p / peop le , $x21 in $x20 / p e r s o n

f o r $w in $x21 / watches , $x22 in $w / watch
l e t $x8 := $x21 / @id

Let a Single FLWOR Bloom 55

l e t $x10 := $x22 / @ open auc t ion
l e t $x13 := $x21 / p r o f i l e , $x27 := $x13 / @income
f o r $x3 in <a u c t i o n i d =”{$x39}”>

<i n c r e a s e f i r s t =”{$x35}” l a s t =”{$x38}”/>
<watched by i d =”{$x8}”/>

</ a u c t i o n>
where $x39 = $x10 and $x27 > 5000
re turn $x3

where ze ro−or−one ($x35) ∗ 2 <= $x38
re turn $x2

re turn $x1

In this expression, for example, the XPath predicate profile/@income > 5000
is removed from the location step and added to the where clause of the according
FLWOR block. Moreover, we replaced the common path expressions from within the
element construction and the where clauses (e.g. the path selecting the increases of the
first and last bid) by single variables. Note that it is not possible to move the positional
predicates into the where clause, as they occur in a let binding. Also note that for
presentation purposes, we abbreviated consecutive occurrences of for and let expres-
sions using commas. In the full representation of this query, for and let expressions
that bind multiple variables are split into separate expressions.

5 Merging FLWOR Blocks

After finishing the normalization phase, the query is prepared for the core rules of our
toolkit, the for and let merging rewrites. The ultimate goal of the rewrites presented
in this section is to reduce the number of query blocks as much as possible.

Reconsider our normalized example query shown above. This formulation of the
query contains several nested FLWOR expressions. The FLWOR nesting depth in line 3
is three. The for-clause binding $o is nested in a let clause which, in turn, is nested
in the outer most for-clause binding $x1. Moreover, the query contains a for clause
defining $x2 whose binding sequence is generated by another for clause.

In the following, we introduce rewrite rules that remove such nested expressions.
Applying them to our example query eliminates all nested FLWORs.

We start with rewrites that remove FLWORs nested in for clauses (see Fig. 5) and
then proceed to let clauses (see Fig. 6).

5.1 For Rewrites

The semantics of a for clause is to iterate over items of the binding sequence, binding
the for variable to every item in this sequence. The remaining FLWOR expression is
evaluated for each such binding, and the individual result sequences are concatenated.
We are interested in a for clause if its binding sequence is created by a nested FLWOR
expression. In some cases, we can lift the inner FLWOR to the outer level. This rewrite
opportunity results from the fact that sequences in the XQuery data model are never
nested. Hence, it often does not matter on how many levels an implicit concatenation of
return sequences occurs because the result is always a flat sequence.

56 M. Brantner, C.-C. Kanne, and G. Moerkotte

ForOrLetClauses1
for $x1 in (ForOrLetClauses2

for $x2 in ExprSingle1
ForOrLetClauses3
where ExprSingle2
return $x2)

ForOrLetClauses4
where ExprSingle3
return VarRef1

→

ForOrLetClauses1
ForOrLetClauses2
for $x1 in ExprSingle1
ForOrLetClauses′

3
ForOrLetClauses4
where ExprSingle3 and ExprSingle

′
2

return VarRef1

(10)

Conditions: ForOrLetClauses′
3 := ForOrLetClauses3[$x2 ← $x1] and

ExprSingle′
2 := ExprSingle2[$x2 ← $x1]

ForOrLetClauses1
for $x1 in (ForOrLetClauses2

let $x2 := ExprSingle1
ForOrLetClauses3
where ExprSingle2
return $x2)

ForOrLetClauses4
where ExprSingle3
return VarRef1

→

ForOrLetClauses1
ForOrLetClauses2
let $x2 := ExprSingle1
ForOrLetClauses3
for $x1 in $x2
ForOrLetClauses4
where ExprSingle3 and ExprSingle2
return VarRef1

(11)

Fig. 5. For rewrites

For example, consider the left-hand side of the first for Rewrite 10. In this rewrite,
the variable $x1 is iteratively bound to each item returned by the inner FLWOR. The
result of the inner FLWOR is generated by the return clause. Note that in our case,
the return clause consists only of a variable reference, i.e. variable $x2. To merge the
two blocks, we have to guarantee that the outer for variable $x1, after merging, is still
bound to the same items, i.e. those generated by variable $x2. To this end, we replace the
nested FLWOR with the expression responsible for binding $x2. In the rewrite, this ex-
pression is called ExprSingle1 and bound by a for clause. The remaining (optional)
clauses are moved into the outer FLWOR block. Specifically, ForOrLetClauses2

and ForOrLetClauses3 are pulled up one level. ExprSingle2 from the inner
where clause is conjunctively connected to the expression in the outer where clause 3.
After relocating the inner expressions, we have to replace free occurrences of the pre-
vious inner variable $x2 with $x1.

Similarly, we merge two query blocks if the binding sequence is created by a nested
let variable (see our Rewrite Rule 11). Note that the right-hand side of Rule 11 may
still contain a FLWOR nested in a let clause. This case is unnested by Rule 12, which
is presented in the next section.

Other rules for FLWORs nested within for clauses are discussed in the extended
version of this paper [2], including cases with positional variables and order by
clauses.

Running Example. On our example query, we can apply Rewrite Rule 10 twice. First,
to eliminate the inner for-clause binding $x2, as this variable is returned to create the
binding sequence for $x1. Second, we apply this rule to eliminate the for expression
binding $x3. This results in the following expression:

3 As before, expressions without where are treated as if a where true clause was added.

Let a Single FLWOR Bloom 57

l e t $ a u c t i o n := doc (” a u c t i o n . xml ”)
l e t $x32 := $ a u c t i o n / s i t e
l e t $euro := f o r $o in $x32 , $x13 in $o / o p e n a u c t i o n s , $x14 in $x13 / o p e n a u c t i o n

f o r $ i in $x32 , $x15 in $ i / r e g i o n s , $x16 in $x15 / eu rope
f o r $x17 in $x16 / i tem , $x18 in $x17 / @id
l e t $x4 := $x14 / i t e m r e f , $x19 := $x4 / @item

where $x19 eq $x18
re turn $x14

f o r $a in $euro
l e t $x33 := $a / b i d d e r [1] , $x34 := $x33 / i n c r e a s e , $x35 := $x34 / t e x t ()
l e t $x36 := $a / b i d d e r [l a s t ()] , $x37 := $x36 / i n c r e a s e , $x38 := $x37 / t e x t ()
l e t $x39 := $a / @id
f o r $p in $x32 , $x20 in $p / peop le , $x21 in $x20 / p e r s o n
f o r $w in $x21 / watches , $x22 in $w / watch
l e t $x8 := $x21 / @id , $x10 := $x22 / @ open auc t ion
l e t $x13 := $x21 / p r o f i l e , $x27 := $x13 / @income
f o r $x1 in <a u c t i o n i d =”{$x39}”>

<i n c r e a s e f i r s t =”{$x35}” l a s t =”{$x38}”/>
<watched by i d =”{$x8}”/>

</ a u c t i o n >
where ze ro−or−one ($x35) ∗ 2 <= $x38 and $x39 = $x10 and $x27 > 5000
re turn $x1

5.2 Let Rewrites

let clauses require separate rewrites because they bind a variable to the result of its
associated expression, i.e. without iterating over this result. Fig. 6 presents three rewrite
rules to eliminate FLWORs nested in let clauses.

Rewrite Rule 12 tackles a frequently used case. There, a for iteration is used to
enumerate all items contained in a let variable. This technique is used in our example
query and may, for example, result from inlining an XQuery function as explained at the
beginning of this section. The rules suggest to eliminate the let variable if it is used

ForOrLetClauses1
let $x1 := ExprSingle1
ForOrLetClauses2
for $x2 in $x1
ForOrLetClauses3
where ExprSingle2
return VarRef

→

ForOrLetClauses1
ForOrLetClauses2
for $x2 in ExprSingle1
ForOrLetClauses3
where ExprSingle2
return VarRef

(12)

Condition: There are no other occurrences of $x1.

ForOrLetClauses1
let $x1 := (ForOrLetClauses2

for $x2 in ExprSingle1
where ExprSingle2
return $x2)

where ExprSingle3
return $x1

→

ForOrLetClauses1
ForOrLetClauses2
for $x2 in ExprSingle1
where ExprSingle3 and ExprSingle2
return $x2

(13)

Condition: There are no other occurrences of $x1.

ForOrLetClauses1
let $x1 := (ForOrLetClauses2

let $x2 := ExprSingle1
where ExprSingle2
return $x2)

where ExprSingle3
return $x1

→

ForOrLetClauses1
ForOrLetClauses2
let $x2 in ExprSingle1
where ExprSingle3 and ExprSingle2
return $x2

(14)

Condition: There are no other occurrences of $x1.

Fig. 6. Let rewrites

58 M. Brantner, C.-C. Kanne, and G. Moerkotte

only once and inline the associated expression (i.e. ExprSingle1). On this result, the
rewrites of the previous section (see Fig. 5) can be applied and eliminate the nesting.

Fig. 6 also contains two rewrites that remove nested for (see Rule 13) and let (see
Rule 14) expressions, respectively. Without loss of generality, the outer let clause in
both rules is immediately followed by the where clause. If there was another for or
let clause, it would not contain occurrences of x1 and, hence, could be moved above
the let clause binding x1.

Running Example. The result of applying the let Rewrite Rule 12 and the for
Rewrite Rule 10 to our example is the following query finally consisting of a single
query block.

l e t $ a u c t i o n := doc (” a u c t i o n . xml ”) , $x32 := $ a u c t i o n / s i t e
f o r $o in $x32 , $x13 in $o / o p e n a u c t i o n s , $a in $x13 / o p e n a u c t i o n
f o r $ i in $x32 , $x15 in $ i / r e g i o n s , $x16 in $x15 / eu rope
f o r $x17 in $x16 / i tem , $x18 in $x17 / @id
l e t $x4 := $a / i t e m r e f , $x19 := $x4 / @item
l e t $x33 := $a / b i d d e r [1] , $x34 := $x33 / i n c r e a s e , $x35 := $x34 / t e x t ()
l e t $x36 := $a / b i d d e r [l a s t ()] , $x37 := $x36 / i n c r e a s e , $x38 := $x37 / t e x t ()
l e t $x39 := $a / @id
f o r $p in $x32 , $x20 in $p / peop le , $x21 in $x20 / p e r s o n
f o r $w in $x21 / watches , $x22 in $w / watch
l e t $x8 := $x21 / @id , $x10 := $x22 / @ open auc t ion
l e t $x13 := $x21 / p r o f i l e , $x27 := $x13 / @income
f o r $x1 in <a u c t i o n i d =”{$x39}”>

<i n c r e a s e f i r s t =”{$x35}” l a s t =”{$x38}”/>
<watched by i d =”{$x8}”/>

</ a u c t i o n >
where ze ro−or−one ($x35) ∗ 2 <= $x38 and $x39 = $x10

and $x27 > 5000 and $x19 eq $x18
re turn $x1

Note how in this form, all value-based join and selection predicates are available in a
unified where clause. This allows a plan generator to decide on index access and join
orders.

6 Evaluation

A goal of this paper is to show how to rewrite a query into a form that consists of a
single query block to give a single run of the plan generator as much uniformly struc-
tured information about the query as possible. We now elaborate on the importance of
this goal by discussing the optimization of our example query during plan generation.
We will see how more efficient plans can be generated only when the query has been
reduced to a single block.

Due to space constraints, we do not explore the whole search space available, but fo-
cus on join ordering. We assume that the optimizer has decided on subplans to produce
the sequences for Open Auctions, European Items, and Persons. The subplans may be
based on pattern matching algorithms. Further, we assume that the predicate selecting
the auctions according to their bids has been converted into a single predicate subplan.
This predicate is, however, more expensive to evaluate than a simple value compari-
son, and its placement in the overall plan does affect performance significantly. Thus,

Let a Single FLWOR Bloom 59

open_auctions european items

people($a)

σ income > 5,000σ bid[|]*2 ≤ bid[last]

MapConcat

(a) Block-by-block transla-
tion

open_auctions european items

people

σ income > 5,000σ bid[|]*2 ≤ bid[last]

(b) Plan 1

open_auctions

european items people

σ income > 5,000

σ bid[|]*2 ≤ bid[last]

(c) Plan 2

open_auctions

european items

people

σ income > 5,000σ bid[|]*2 ≤ bid[last]

(d) Plan 3

open_auctions

european items

people

σ income > 5,000

σ bid[|]*2 ≤ bid[last]

(e) Plan 4

Fig. 7. Alternative execution plans

finding an optimal plan includes finding an optimal position for this predicate. We now
discuss execution plans for our example query in the form of algebraic expressions on
an abstract level (see Fig. 7).

A straightforward translation of the original, nested, multi-block query looks like
Fig. 7(a). Here, the FLWOR blocks are translated directly into separate subplans, and
no global optimization takes place. For simplicity, we disregard the first line of the
example query (the initial let clause for the document root). The top-level MapConcat
operator represents the main FLWOR expression. Its operand generates the tuple stream
and contains subplans for the European Auctions query block. The subplan connected
to MapConcat by the dashed line represents the query block in the return clause (the
last eight lines of the query). It has a free variable $a in the subplan for the people
sequence, and, hence, has to be reevaluated for every tuple of the MapConcat operand,
as dictated by XQuery FLWOR semantics.

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

T
im

e
(s

)

Selectivity

Plan 1
Plan 2
Plan 3
Plan 4

Fig. 8. Performance results

Fig. 7 shows four other execution plans
based on the rewritten, single-block form of
our example query. They can be enumerated
by the plan generator because it has access
to all value-based predicates of the query in
a single where clause and can detect joins
and determine an optimal order for them and
the residual selections. We executed all five
plans from Fig. 7 in our hybrid relational and
XML DBMS Natix [9] on an XMark docu-
ment with scaling factor one.

The experimental setup consisted of a
PC with an Intel Pentium D CPU having
3.40GHz and 1GB of main memory, running

60 M. Brantner, C.-C. Kanne, and G. Moerkotte

on openSUSE 10.2 with Linux Kernel 2.6.18 SMP. To investigate the relative perfor-
mance of the execution plans, we varied the selectivity of the predicate restricting the
people by their income between 0.14 and 0. This corresponds to incomes between
60,000$ to 130,000$ instead of 5,000$ in the original query. Fig. 8 shows the result
of this small performance study (execution time in seconds) for four plans from Fig. 7.

The experiment makes obvious why careful global plan generation based on single-
block queries is crucial for efficient execution. The results of the nested-loop strategy
of the straightforward translation are orders of magnitude slower (well beyond 100s)
and have been left out of the graph. The join-based plans made possible by our rewrit-
ten single-block query show that an enumeration of alternatives is as important as in
relational query processing: Depending on selectivity, the overall best plan varies. The
plan according to Fig. 7(e) performs best with a very low selectivity, whereas the plan
belonging to Fig. 7(b) outperforms the others with an increasing selectivity.

Acknowledgments. We would like to thank Simone Seeger and the anonymous review-
ers for their helpful comments.

References

1. Aho, A., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools. Wesley Long-
man Publishing, Boston, MA, USA (1986)

2. Brantner, M., Kanne, C-C., Moerkotte, G.: Let a single FLWOR bloom. Technical report,
University of Mannheim, TR-2007-007 (2007)

3. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern matching.
In: SIGMOD, pp. 310–321 (2002)

4. Dayal, U.: Of nests and trees: A unified approach to processing queries that contain nested
subqueries, aggregates, and quantifiers. In: Proc. VLDB, pp. 197–208 (1987)

5. Hidders, J., et al.: How to recognise different kinds of tree patterns from quite a long way
away. In: Proc. PLAN-X (2007)

6. May, N., et al.: XQuery processing in Natix with an emphasis on join ordering. In: First
International Workshop on XQuery Implementation, Experience and Perspectives (XIME-P
2004) (2004)

7. Al-Khalifa, S., et al.: Structural Joins: A primitive for efficient XML query pattern matching.
In: ICDE, pages 141- (2002)

8. Boag, S., et al.: XQuery 1.0: An XML query language. Technical report, World Wide Web
Consortium, W3C Recommendation (January 2007)

9. Fiebig, T., et al.: Anatomy of a native XML base management system. j-VLDB-J 11(4),
292–314 (2002)

10. Ganski, R.A., Wong, H.K.T.: Optimization of nested SQL queries revisited. In: SIGMOD,
pp. 23–33 (1987)

11. Graefe, G.: Query evaluation techniques for large databases. ACM Computing Surveys 25(2),
73–170 (1993)

12. Grust, T., Keulen, M.v.: Tree awareness for relational DBMS kernels: Staircase Join. In:
Intelligent Search on XML Data, pp. 231–245 (2003)

13. Hidders, J., Michiels, P.: Avoiding unnecessary ordering operations in XPath. In: Database
Programming Languages, pp. 54–70 (2003)

Let a Single FLWOR Bloom 61

14. Josifovski, V., Fontoura, M., Barta, A.: Querying XML streams. j-VLDB-J 14(2), 197–210
(2005)

15. May, N., Helmer, S., Moerkotte, G.: Strategies for query unnesting in XML databases. ACM
Transactions on Database Systems 31(3), 968–1013 (2006)

16. Michiels, P., Mihaila, G., Siméon, J.: Put a tree pattern in your algebra. In: Proc. ICDE (2007)
17. Pirahesh, H., Hellerstein, J.M., Hasan, W.: Extensible/rule based query rewrite optimization

in starburst. In: SIGMOD, pp. 39–48 (1992)
18. Seshadri, P., Pirahesh, H., Leung, T.Y.C.: Complex query decorrelation. In: Proc. ICDE, pp.

450–458 (1996)

Efficient XQuery Evaluation of Grouping

Conditions with Duplicate Removals

Norman May and Guido Moerkotte

University of Mannheim
B6, 29

68131 Mannheim, Germany
{norman,moer}@db.informatik.uni-mannheim.de

Abstract. Currently, grouping in XQuery must be expressed implicitly
with nested FLWOR expressions. With XQuery 1.1, an explicit group
by clause will be part of this query language. As users integrate this new
construct into their applications, it becomes important to have efficient
evaluation techniques available to process even complex grouping condi-
tions. Among them, the removal of distinct values or distinct nodes in the
partitions defined by the group by clause is not well-supported yet. The
evaluation technique proposed in this paper is able to handle duplicate
removal in the partitions efficiently. Experiments show the superiority of
our solution compared to state-of-the-art query processing.

1 Motivation

XML gains importance as a storage format for business or scientific data. As
more and more data is stored in this format, analytical query processing, i.e.
XOLAP, becomes an important requirement. XQuery is the query language stan-
dardized for this purpose. While XQuery already includes a rich set of features,
it lacks functions to support analytical query processing efficiently. Most impor-
tantly, grouping must be formulated implicitly with nested queries. While this
challenge has already been addressed by techniques that unnest nested queries,
end users and database implementors have identified the need for an explicit
grouping construct that allows for efficient processing.

Consequently, a value-based grouping construct is part of the core require-
ments for XQuery 1.1, the next version of XQuery. Since the work on this version
has just started, we will use the proposal for a group by construct by Beyer
et. al. [1]. An efficient XQuery execution engine should include a powerful im-
plementation of the grouping operator. With minor extensions of the relational
grouping operators, it is possible to support several cases of grouping. We focus
on a case that is neither well-supported for XQuery nor for SQL: We investigate
efficient evaluation techniques for group by where duplicates are removed on
different attributes of tuples that are in the same partition.

D. Barbosa et al. (Eds.): XSym 2007, LNCS 4704, pp. 62–76, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient XQuery Evaluation of Grouping Conditions 63

1.1 Motivating Example

Consider the following example query on the XMark document instance depicted
in Fig. 1(a). It counts for every open auction the total number of bidders, the
number of distinct bidders, the maximum increase, and the number of different
increases (We abbreviate some element or attribute names as follows: personref
– pr, @person – @p, increase – i).

for $auction in $doc/site/open auctions/open auction,
$bidder in $auction/bidder

let $person := $bidder/personref/@person,
$increase := $bidder/increase

group by $auction into $a using fn:deep−equal
nest $person into $p,

$increase into $i
let $pd := distinct−values($p),

$pi := distinct−values($i)
return

<status>
{ $a/ seller }
<bid−count> { count($p) } </bid−count>
<distinct−bidders> { count($pd) } </distinct−bidders>
<max−increase> { max($i) } </max−increase>
<distinct−steps> { count($id) } </distinct−steps>

</status>

In the example query, the keyword group by is directly followed by the grouping
expression (a reference to variable $auction), the keyword into, and the group-
ing variable ($a). The function mentioned after the keyword using is used to
partition the input tuples into groups. The nesting expression after the keyword
nest is applied to every tuple that is assigned to some group. The result of this
computation is appended to the current group referenced by the nesting variable.
In the example query, we use the optional let clause to remove duplicates from
the sequences bound to the nesting variables. The result of the group by is a
sequence of tuples that contains bindings for every grouping variable and every
nesting variable. Notice that sequence order is not meaningful in the context of
this operator because there is no immediate relationship between input tuples
and output tuples any more. We denote with aggregation variable all variables in
the scope of the return clause that are the argument of an aggregate function,
i.e. $p, $i, $pd, $pi in our example query.

Fig. 1(b) shows the tuples that serve as input to the group by. We trace how
the group defined by a single open auction, a1, is processed. In Fig. 1(c), we have
identified groups – in this example, there is only a single group. To compute the
result of the aggregate functions in the return clause of this query, we need to
remove duplicate values from every sequence bound to the nesting variables. We
have highlighted them in the two sequences.

Most systems try to avoid copying and, hence, would filter duplicates by
discarding complete input tuples. In general, this only works when duplicates
are removed from at most one aggregation variable. In our example, however,

64 N. May and G. Moerkotte

site

. . . open auctions

open auction

bidder

pr

@p

p1

i

1.0

bidder

pr

@p

p2

i

1.0

bidder

pr

@p

p3

i

4.0

bidder

pr

@p

p1

i

10.0

. . .

(a) XMark example document

$auction $person $increase

a1 p1 1.0
a1 p2 1.0
a1 p3 4.0
a1 p1 10.0

(b) Input of group by

$a $p $i

a1 < p1, < 1.0,
p2, 1.0,
p3, 4.0,
p1 > 10.0 >

(c) Groups and dupli-
cates detected

$a $p $pd $i $id

a1 < p1, < p1, < 1.0, < 1.0,
p2, p2, 1.0, 4.0,
p3, p3 > 4.0, 10.0 >
p1 > 10.0 >

(d) Duplicates removed

Fig. 1. A complex grouping query

the second and the fourth tuple contain duplicates. However, we have to keep
the second tuple because bidder p2 is a unique value. We also have to keep the
fourth tuple because it contains a unique value for the increase. Clearly, every
aggregation variable with duplicate removal needs to be processed seperately.
The result after duplicate removal in the let clause is shown in Fig. 1(d). It is
the input to the aggregate functions in the return clause.

1.2 State-of-the-Art Processing

As we are not aware of any publically available system that supports the group
by operator in XQuery, we have looked at similar queries in SQL.1 We could
distill two basic strategies to process this type of queries.

Sort-Based Strategy: Replicate the input for every aggregation variable that
requires duplicate elimination. Sort the sequences to aggregate and use a
sort-based implementation to evaluate the aggregate function with and with-
out duplicate removal in one pass over the data.

1 In SQL, the keyword distinct may occur only inside one single aggregate function.
Nevertheless, actual database systems support the occurance of this keyword in
several aggregate functions over distinct attributes.

Efficient XQuery Evaluation of Grouping Conditions 65

Hash-Based Strategy: Perform one scan and compute the aggregate function
for all attributes without duplicate removal, and perform another scan for
every aggregation variable with duplicate removal. This alternative may also
use hash-based implementations for grouping and duplicate removal.

In our experiments we show that these two strategies do not scale well with an
increasing number of duplicate removals. For every expression that demands a
duplicate removal, either strategy introduces a new scan over the input data. Con-
sequently, query performance suffers as the number of such expressions grows.

1.3 Our Contributions

The contribution of our work is to avoid the repeated scan of the input data men-
tioned above. We propose to process a single group at a time. In many cases,
the whole group will fit into main memory and, thus, expensive I/O is avoided.
Moreover, we can handle groups of arbitrary size – even larger than available
main memory. In our evaluation strategy, available main-memory is a tunable
parameter. Thus, we can trade increased memory consumption for faster pro-
cessing in main memory. Unlike other proposals for grouping of XML data, our
processing strategy fits well into current database architectures. In particular,
we need to extend the query execution engine only with two new algebraic oper-
ators. We have implemented all three alternative processing strategies in Natix,
our native XML database system [7]. Our experiments show that our approach
performs favourably compared to the state of the art.

Outline of the Paper. Next, in Sec. 2 we discuss related work. The core of this
paper is Sec. 3, in which we discuss the three alternative strategies to process
grouping with duplicate removal in the nesting expression. In experiments pre-
sented in Sec. 4, we compare the performance of these plan alternatives. In Sec. 5,
we summarize the results of this paper.

2 Related Work

The recently published W3C recommendation of XQuery does not contain an
explicit group by construct [2]. Consequently, grouping must be expressed with
nested queries, and optimizers need to detect that grouping is formulated im-
plicitly. Proposals to detect implicit grouping by unnesting nested query blocks
in XQuery include [13,15,16].

As motivated in [1], it can be quite cumbersome to formulate grouping queries
correctly. Moreover, if the query optimizer cannot detect implicit grouping in a
nested query, evaluating the nested query usually results in poor performance.
Hence, both users and database implementors seem to agree that XQuery should
include an explicit group by syntax and, thus, value-based grouping as we
discuss it in this paper is a core requirement for the next version of XQuery [6].
Proposals for a syntax for grouping in XQuery have appeared in [1,3,12]. In this
paper, we use the syntax and semantics presented in [1].

66 N. May and G. Moerkotte

Recently, implementations for group by and the cube operator for analytical
XML query processing were developed. The grouping operator proposed in [9]
computes arbitrary aggregates over a single XML document by merging XML
nodes belonging to the same group. In this proposal, retrieval of the XML data,
grouping, and aggregation are tightly integrated into a single processing strategy.

Another extension to XQuery, a cube operator for XML, is presented in [17].
The paper investigates computational and semantic challenges associated with
the aggregation of XML. Since implementations of the cube operator can benefit
from efficient algorithms of the grouping operator, our work is also relevant when
the arguments of aggregate functions are subject to duplicate removal.

Both proposals above do not explicitly address the problem of duplicate elim-
ination. In fact, we are not aware of any proposal to handle duplicate elimi-
nation in grouping operations. The two processing strategies, which we use to
benchmark our implementation, are derived from the explain utilities of two
commercial database products.

Our solution is closely related to the XML result construction operators pre-
sented by Fiebig et al. [8]. Based on this framework, we process one group at a
time. This allows us to optimize the processing of every aggregate individually
and, thus, improve the performance of query evaluation.

Standard implementation techniques for the grouping operator are discussed
by Graefe [10]. This survey also discusses data flow and control flow beyond the
standard iterator model, as we use them in this paper. We plan to extend our
distinct processing strategy to the binary grouping operator [14] and to window-
based aggregation. Of course, efficient implementations for the grouping operator
need to be complemented with optimizations, as they were presented in [5,11,18].
These optimizations are still valid for our implementation.

3 The Grouping Algorithms

In this section, we develop the grouping algorithm that can handle duplicate
elimination in arguments of aggregate functions efficiently. First, we introduce
some notation necessary to understand the plan alternatives we present in this
section. This notation is borrowed from [8]. Then, we discuss three alternatives
to evaluate grouping with duplicate removal.

3.1 Notation

The algebraic operators in the query execution engine of Natix are implemented
as iterators [10]. They consume and produce sequences of tuples. Every tuple
contains a set of attributes which are either bound to base types such as strings,
numbers, or node references, or again contain ordered sequences of tuples. Thus,
our operators conform to the basic iterator interface open, getNext, and close;
details can be found in [7]. The operators we use in this paper are shown in
Fig. 2. In the upper part of an operator, we give its name, whereas the lower
part contains information about the subscript, e.g. the sort key of the Sort

operator. They include:

Efficient XQuery Evaluation of Grouping Conditions 67

GetNext

GetNext

Tuple

Tuple

ScalarAggr

aggr: count

GetNextTuple

MergeJoin

predicate: l = r

GetNextTupleGetNextTuple

GetNextTuple

HashJoin

predicate: l = r

GetNextTupleGetNextTuple

GetNext

GetNext

Tuple

Tuple

aggr: count

group: =item

HashGroup

GetNext

GetNext

Tuple

Tuple

aggr: count

group: =item

SortGroup

GetNextTuple

Eval

attributes: a1, a2
source: e

Data Flow

Control Flow

GetNextTuple

Sort

sortkey: a1, a2

Fig. 2. Operator Notation

Eval This operator is not an actual operator. In this paper, it denotes XML data
retrieval needed as input to the grouping operators. It evaluates a complex
expression, e, in its subscript and binds the attributes mentioned. Executing
expression e might include index access or navigation over an XML docu-
ment. Since efficient XML data retrieval is not the focus of this paper, we
use this operator as an abbreviation.

Sort sorts its input according to the sort key mentioned in its subscript. Our
implementation uses external sorting with replacement selection.

ScalarAggr returns a single tuple with a set of attributes, each of which is
bound to the result of an aggregate function, e.g. fn:min, fn:sum, fn:count,
or even SQL/XML functions such as xmlagg.

MergeJoin implements a 1:N sort-merge join. Of course, its arguments must be
sorted on the attributes mentioned in the join predicate. In this paper, we
do not need the more general N:M sort-merge join.

HashJoin implements a nested-loop join where blocks of the left producer are
loaded into a main-memory hash table and matched with tuples of the right
producer.

SortGroup groups the input assuming that the sequence of tuples of the pro-
ducer is sorted by the grouping attributes.

HashGroup employs amain-memoryhash table toperformthegrouping operation.

All these operator implementations are well-known from the literature [10]. No-
tice that the two grouping operators can also be used to remove duplicates.
When we want to remove duplicates, we denote this by DuplElim.

In this iterator-based implementation, control flows from a consumer of tu-
ples to its producer, and data flows into the opposite direction. As depicted in
Fig. 2, we denote the former by dashed arrows and the latter by solid arrows.
As our solution involves control flow beyond the direct argument relationship,
we explicitly present them in our plans.

68 N. May and G. Moerkotte

MergeJoin

predicate: g1 = g1

sortkey: g1, a1

Sort

sortkey: g1, a2

Sort

attributes: g1, a1

Eval

source: e

attributes: g1, a3

Eval

source: e

sortkey: g1, a3

Sort

attributes: g1, a2

Eval

source: e

SortGroup

aggr: a1 with and
group: = g1

SortGroup

group: =g1
aggr: a2 with and

SortGroup

group: =g1
aggr: a3 with and

MergeJoin

predicate: g1 = g1

without distinct without distinct without distinct

Fig. 3. Plan for sort-based strategy

3.2 Sort-Based Evaluation Strategy

The first evaluation strategy for grouping we have observed in commercial sys-
tems is shown in Fig. 3. It performs repeated scans of the input data for every
attribute that contains a duplicate removal. Additional aggregate functions are
piggy-backed on the branches in the plan. All grouping operators require their in-
put to be sorted on the grouping attributes. In addition, the input must be sorted
on the attributes mentioned in aggregate functions with duplicate removal. As a
consequence, the sort-based grouping operator can compute aggregate functions
that do not contain duplicate removals and all aggregates that contain duplicate
removal on the same attribute in one scan. At the end, all partial plans are com-
bined by a sort-merge join because this join implementation exploits the order
available on the grouping attributes.

Evidently, this strategy performs the scan of the input data and, if needed, the
sort operation repeatedly for every distinct attribute mentioned in an aggregate
function with duplicate removal. It is our goal to share this repeated evaluation
and, thereby, improve the performance of the plan.

3.3 Hash-Based Evaluation Strategy

The second strategy we have found in commercial systems employs one partial
plan to compute the aggregation function for all attributes where no duplicates

Efficient XQuery Evaluation of Grouping Conditions 69

aggr: a3

group: =g1

HashGroup

attributes: g1, a2

Eval

source: e

attributes: g1, a2

Eval

source: e

attributes: g1, a3

Eval

source: e

Eval

attributes: g1, a1, a2, a3

source: e

aggr: a2

group: =g1

HashGroup

key: g1, a2

DuplElim

key: g1, a3

DuplElim

predicate: g1 = g1

HashJoin

HashGroup

group: = g1
aggr: all attibutes

key: g1, a1

DuplElim

HashJoin

predicate: g1 = g1

HashJoin

predicate: g1 = g1

aggr: a1

group: =g1

HashGroup

without distinct

Fig. 4. Plan for hash-based strategy

are removed. For every aggregate function that contains a duplicate removal
on some attribute, one partial plan is executed. All these plans are combined
by joins to compute the final result. This strategy, depicted in Fig. 4, leaves
the query optimizer the freedom to choose between sort-based and hash-based
implementations for every partial plan. Thus, in this extreme case where we
use sorting for every branch, we arrive at the sort-based strategy but with one
additional partial plan.

For this reason, we investigate the case where all operations are performed by
hash-based operators. The potential advantage of hash-based operators is that
they avoid sorting. Notice, however, that this strategy shares the inefficiency of
repeated scans (or evaluation) of the input.

3.4 Groupify and GroupApply

It is our goal to avoid the repeated evaluation of the argument expression of the
group by operator. The key idea of our approach is to separate detecting group

70 N. May and G. Moerkotte

boundaries from processing groups. For every group, evaluating the complex
grouping conditions follows three steps. These steps are governed by two new
operators, Groupify and GroupApply, and involve non-standard control and
data flow between them. This is shown in Fig. 5.

Groupify

first:

Tuple

Tuple GetNext

GetNext

group: =item

Tuple GetNext

last:

GroupApply

Tuple GetNext

algebraic expressions to
GetNextGroup

ResetGroup perform aggregation

Fig. 5. Groupify and GroupApply

First, the Groupify operator detects
group boundaries. Computing the aggre-
gate functions for each group requires
multiple passes over the tuples of this
group. Therefore, the Groupify operator
materializes the tuples of a group. Notice
that a group might not completely fit into
physical main memory. When we have
finished processing a group, the oper-
ator discards the tuples of this group
and continues with the next one. In our
implementation, we expect the input to
be sorted on the grouping attributes.
But a hash-based implementation is also
possible.

Second, aggregation and duplicate re-
moval is done by plans that consume the
tuples of a group. One advantage of our
approach is that we can optimize these

partial plans. For example, we can apply any of the strategies discussed in the
previous two subsections. Another advantage is that processing of a group fo-
cuses on a fragment of the whole data and, thus, can benefit from the locality
of data access.

Finally, we need the GroupApply operator to combine the results of the partial
plans. After a group was detected and materialized, this operator evaluates all par-
tial plans in a round-robin fashion. Since every partialplan is evaluated on the same
sequence of tuples, the GroupApplyoperator signals the Groupifyoperator to scan
the current group again from the beginning. Therefore, the GroupApply operator
calls the function Groupify::resetGroup. The GroupApply operator combines
the results of these plans into the overall result of the current group. When we have
evaluated every partial plan, we can process the next group. Again, this requires
communication between the GroupApply and Groupify operator. More precisely,
the GroupApply operator uses the function Groupify::getNextGroup to notify
that the evaluation of all argument plans is complete. Then, the Groupify opera-
tor discards the current group and processes the next one.

Fig. 5 shows the communication between the Groupify operator and the
GroupApply operator as dashed arrows. The control flow bypasses the plans
that perform the aggregation. The data flow extends the iterator model because
several algebraic operators consume the tuples produced by the Groupify oper-
ator. Notice that we neither have to modify any iterator-based operator nor the

Efficient XQuery Evaluation of Grouping Conditions 71

key: a3

DuplElim

aggr: a3

ScalarAggr

aggr: a2

ScalarAggr

SortGroup

group: =g1
aggr: a1 (with distinct)

all non−distinct

key: a2

DuplElim

sortkey: g1, a1

Sort

Eval

attributes: g1, a1, a2, a3

source: e

group: =g1
first: −

Groupify

last: combine results

GroupApply

GetNextGroup

ResetGroup

Fig. 6. Plan based on Groupify and GroupApply

general query processing architecture of our system to support this data flow. All
necessary extensions are restricted to the Groupify and GroupApply operator.

3.5 Evaluation Strategy-Based on Groupify and GroupApply

Now, we discuss how we use the operators introduced in the previous subsec-
tion to improve the query execution time for queries containing grouping and
duplicate removal on different attributes of tuples that are in the same partition.

From the plan structure shown in Fig. 6, it is evident that we need to evaluate
the argument expression only once. The result of this expression is sorted on the
grouping attributes, and the Groupify operator exploits the order to detect
group boundaries.

The leftmost partial plan computes the aggregate functions without duplicate
removal, using a sort-based grouping operator. This partial plan can benefit

72 N. May and G. Moerkotte

from a minor sort on the attributes a1, on which it needs to perform a duplicate
removal. Notice that this plan also carries the grouping attributes needed in the
final result. The remaining partial plans remove the duplicate values for a single
attribute and compute the aggregate for this attribute. An advantage of this
fine-grained approach is that every partial plan can be optimized by a cost-based
optimizer. In particular, a sort-based or hash-based evaluation strategy can be
chosen for every of these partial plans. The GroupApply operator combines the
results of the partial plans to the final result tuple of the grouping operation.

4 Experiments

We have implemented all algorithms in Natix, our native XML database sys-
tem [7]. Natix was compiled with GCC 4.1.2 and optimization level O3. All
queries were executed on a Linux system with Kernel 2.6.18, an Intel Pentium 4
CPU 2.40GHz, 1 GB RAM, and IBM 18.3 GB Ultra 160 SCSI hard disk drive
with 4 MB buffer. All queries were run with cold buffer cache of 8 MB size. We
report the average execution time of three runs of every query.

4.1 Dataset and Queries

To investigate the performance of the three execution strategies presented in
Sec. 3, we use a synthetic dataset. This setup allows us to carefully investigate
the impact of different parameters both of the query and the data.

XML view cardinality raw size
X1 216 = 65k 1.3 MB
X2 220 = 1M 21 MB
X3 223 = 8M 168 MB

Fig. 7. Dataset

Every execution strategy retrieves the
input to the group by clause from a ma-
terialized XML view that contains exactly
the tuples needed to evaluate the query.
This is reasonable because we want to iso-
late the effect of the different implementa-
tions for grouping. We have examined three
XML views X1, X2, and X3. Their cardinal-
ity and raw data size is summarized in Fig. 7.

In Fig. 8, we show the query pattern we
used to benchmark the query performance of the different evaluation strategies.
The first for clause retrieves the grouping attribute and the remaining for clauses
the k attributes to aggregate. Choosing different tag names tag g and tag i

(i = 1 . . . k) in these clauses allows us to modify the number of groups or the
number of distinct values for the attributes to aggregate. Thus, we can control
the number of groups in the result and the cost and effect of the duplicate removal
in the nesting expressions. In the group by clause, we have k nesting variables.
Every nesting variable stores one sequence of values to aggregate in this group.
For each such sequence, the let clause after that computes the sequence of values
with duplicates removed. In the return clause, we apply the aggregate function
fn:sum to the nesting sequences computed this way.

Efficient XQuery Evaluation of Grouping Conditions 73

for $g in $doc//tag g,
$a1 in $g//tag a1,
...
$ak in $g//tag ak

where P
group by $g into $gg using eq

nest $a1 into $a1,
...
$ak into $an,

let $a1d := distinct−values($a1),
...
$and := distinct−values($ak)

return
<result>

{ $g }
<a1> { sum($a1) } </a1>
<a1d> { sum($a1d) } </a1d>

...
<ak> { sum($ak) } </ak>

<akd> { sum($akd) } </akd>

</result>

Fig. 8. Query Pattern

Every tuple consists of 5 integer
attributes: one with s unique values,
the others with 4, 32, 1024, or 65536
distinct values. Every attribute cor-
responds to one tag name or at-
tribute selected from the document.
For space reasons, we can only report
the most interesting results.

4.2 Experimental Results

Fig. 9 summarizes the results of
our experiments. We investigate how
each algorithm scales with respect to
the input size, the number of distinct
groups, and the number of nesting
expressions with duplicate removal.

Scalability of Input Size. Figs. 9(a)
and 9(b) show how the three algo-
rithms behave with increasing input
size when the query contains aggre-
gate functions on five distinct at-
tributes with duplicate removal. We

consider both only four (large) groups and 1024 (smaller) groups. Notice the log-
arithmic scale of both axes. Clearly, the sort-based approach scales worst among
the three alternatives. From Fig. 9(a) it is evident that the hash-based plan can
exploit that only four groups exist. Both grouping and the subsequent joins need
to manage only few result tuples which leads to an overall performance advan-
tage compared to the plan using Groupify and GroupApply. In Fig. 9(b), on the
other hand, these two operators scale best.

Scalability of Groups. In Figs. 9(c) and 9(d), we compare the effect of the number
of groups to process. The more groups we have in the input data, the smaller
they become. In both plots, we report the elapsed execution times on the XML
view X2 with two or five attributes with duplicate removal. The experiments
clearly show that both the sort-based strategy and Groupify/GroupApply are
almost insensitive with respect to the number of groups. The cost of these plans
is dominated by the cost for sorting, and this cost component does not change
much with the size of the groups. After that, detecting group boundaries is very
cheap. Independent of the number of groups, the strategy based on GroupApply

and GroupApply outperforms the sort-based strategy. The performance of the
hash-based plan, on the other hand, is very sensitive to the number of distinct
groups. Consequently, the plan quality of this strategy strongly depends on good
cardinality estimates for the number of groups. Unfortunately, estimating the
number of groups is an inherently difficult task [4]. Groupify and GroupApply

74 N. May and G. Moerkotte

 1

 10

 100

 1000

 10000

 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (# Tuples)

Groupify
HashGroup
SortGroup

(a) 5 distinct, 4 groups

 1

 10

 100

 1000

 10000

 10000 100000 1e+06 1e+07

T
im

e
(s

)

Input (# Tuples)

Groupify
HashGroup
SortGroup

(b) 5 distinct, 1024 groups

Scalability of input size

 10

 100

1024324

T
im

e
(s

)

number of groups

Groupify
HashGroup
SortGroup

(c) 2 distinct, 1M rows

 10

 100

 1000

1024324

T
im

e
(s

)

number of groups

Groupify
HashGroup
SortGroup

(d) 5 distinct, 1M rows

Scalability of groups

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 2 3 4 5

T
im

e
(s

)

number of distinct

Groupify
HashGroup
SortGroup

(e) X3, 4 groups
 400

 600

 800

 1000

 1200

 1400

 1600

 2 3 4 5

T
im

e
(s

)

number of distinct

Groupify
HashGroup
SortGroup

(f) X3, 1024 groups

Scalability of duplicate removals

Fig. 9. Experimental Results

become faster than the hash-based method when there are more than approx. 50
groups. In further experiments, we observed similar results for larger and smaller
input sizes.

Scalability of Duplicate Removals. In our final experiment, shown in Figs. 9(e)
and 9(f), we scale the number of attributes on which we remove duplicates. The
plots show the query execution times on XML view X3 for four and 1024 groups.

Efficient XQuery Evaluation of Grouping Conditions 75

Sort-based Hash-based Groupify/GroupApply

Scans of input max(|ad|, 1) 1 + |ad| 1
Temp+Scan max(|ad|, 1) |ad| can be tuned
Main Memory Sort buffers Hash buffers can be tuned

Combining result Join(s) Copy values

where ad = attributes that occur with distinct

Fig. 10. Summary of the plan alternatives

Clearly, the sort-based strategy performs worst among the three alternatives. For
every new attribute with duplicate removal, it has to scan and sort the whole input
once more. As both operations demand I/O operations, the performance suffers.

Both the hash-based plan and Groupify/GroupApply scale better than the
sort-based plan. Again, the hash-based algorithm is the fastest for few groups.
However, for a larger number of groups, Groupify/GroupApply outperform the
other alternatives.

Number of Duplicates to Remove. In our experiments, the query excecution times
did not change significantly when we increased the number of duplicates to be
removed before aggregating them. Hence, we do not present any experimental
results that show the effect of duplicate elimination.

5 Conclusion

We have investigated three different strategies to evaluate grouping when dupli-
cates are removed in several nesting expressions. Based on the algorithms under-
lying each strategy, we can derive the I/O operations needed for each strategy
(see Fig. 10). Both the sort-based and the hash-based alternative scan the base
data once for every aggregation variable which requires a duplicate elimination.
The combination of Groupify and GroupApply, on the other hand, scans the
base data only once. Consequently, Groupify/GroupApply scales better than the
other two strategies with an increasing number of duplicate removals on different
aggregation variables. Since this strategy keeps a single group in main memory
while this group is processed by several partial plans, it avoids expensive I/O
operations. If the group is too large to fit in main memory, parts of the group
can be spooled to disk. Hence, I/O operations can be traded for main-memory
usage. Overall, this leads to more local data access patterns.

Our novel evaluation strategy only requires two new algebraic operators in a
query engine and, thus, it fits well into the standard architecture of database sys-
tems. Finally, we remark that neither alternative can be done in a fully pipelined
fashion. But the group-wise processing of Groupify/GroupApply returns first re-
sults faster. The sort-based strategy demands several more sort operations and
thus, is slower. The hash-based method must process all groups before the first
result tuple is returned. Based on these observations, we plan to develop a cost
model for this processing strategy.

76 N. May and G. Moerkotte

Clearly, evaluation techniques discussed in this paper are not restricted to
grouping in XQuery. It may also be useful for analytical SQL queries in a data
warehouse environment. Currently, however, the SQL standard allows DISTINCT
to be applied only to a single aggregation expression.

Acknowledgements. We would like to thank Simone Seeger for her comments on
the manuscript.

References

1. Beyer, K., Chamberlin, D., Colby, L., Özcan, F., Pirahesh, H., Xu, Y.: Extending
XQuery for analytics. In: SIGMOD (2005)

2. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.:
XQuery 1.0: An XML Query Language. W3C (2007)

3. Borkar, V., Carey, M.: Extending XQuery for grouping, duplicate elimination, and
outer joins. In: XML 2004 (2004)

4. Charikar, M., Chaudhuri, S., Motwani, R., Narasayya, V.: Towards estimation error
guarantees for distinct values. In: Proc. of the ACM PODS (2000)

5. Chaudhuri, S., Shim, K.: Including group-by in query optimization. In: Proc. VLDB
(1994)

6. Engovatov, D.: XML Query 1.1 Requirements. W3C Working Draft (2007)
7. Fiebig, T., Helmer, S., Kanne, C-C., Moerkotte, G., Neumann, J., Schiele, R.,

Westmann, T.: Anatomy of a native XML base management system. j-VLDB-
J 11(4) (2002)

8. Fiebig, T., Moerkotte, G.: Algebraic XML construction and its optimization in
Natix. WWW Journal 4(3) (2001)

9. Gokhale, C., Gupta, N., Kumar, P., Lakshmanan, L., Ng, R., Prakash, B.A.: Com-
plex group-by queries for XML. In: Proc. ICDE (2007)

10. Graefe, G.: Query evaluation techniques for large databases. ACM Computing
Surveys 25(2) (1993)

11. Gupta, A., Harinarayan, V., Quass, D.: Aggregate-query processing in data ware-
housing environments. In: Proc. VLDB (1995)

12. Kay, M.: Positional grouping in XQuery. In: <XIME-P/> (2006)
13. May, N., Helmer, S., Moerkotte, G.: Strategies for query unnesting in XML

databases. ACM TODS 31(3) (2006)
14. May, N., Moerkotte, G.: Main memory implementations for binary grouping. In:

XSym (2005)
15. Paparizos, S., Al-Khalifa, S., Jagadish, H.V., Lakshmanan, L., Nierman, A., Sri-

vastava, D., Wu, Y.: Grouping in XML. In: EDBT workshops (2002)
16. Re, C., Siméon, J., Fernández, M.F.: A complete and efficient algebraic compiler

for XQuery. In: ICDE (2006)
17. Wiwatwattana, N., Jagadish, H.V., Lakshmanan, L., Srivastava, D.: X3: A cube

operator for XML OLAP. In: Proc. ICDE (2007)
18. W. P. Yan, P.-Å. Larson. Performing group-by before join. In: Proc. ICDE, 1994.

On the Effectiveness of Flexible Querying

Heuristics for XML Data

Zografoula Vagena, Latha Colby, Fatma Özcan,
Andrey Balmin, and Quanzhong Li

IBM Almaden Research Center
650 Harry Road, San Jose, CA

Abstract. The ability to perform effective XML data retrieval in the
absence of schema knowledge has recently received considerable atten-
tion. The majority of relevant proposals employs heuristics that identify
groups of meaningfully related nodes using information extracted from
the input data. These heuristics are employed to effectively prune the
search space of all possible node combinations and their popularity is
evident by the large number of such heuristics and the systems that use
them. However, a comprehensive study detailing the relative merits of
these heuristics has not been performed thus far. One of the challenges
in performing this study is the fact that these techniques have been
proposed within different and not directly comparable contexts. In this
paper, we attempt to fill this gap. In particular, we first abstract the
common selection problem that is tackled by the relatedness heuristics
and show how each heuristic addresses this problem. We then identify
data categories where the assumptions made by each heuristic are valid
and draw insights on their possible effectiveness. Our findings can help
systems implementors understand the strengths and weaknesses of each
heuristic and provide simple guidelines for the applicability of each one.

1 Introduction

The expressive power of XML and the many data representation alternatives
that it provides can lead to the creation of datasets with very complex schemata.
In certain cases, such as Web XML documents created in an ad-hoc manner, a
schema might not even exist. These reasons, coupled with the fact that the main
usage of XML, as a standard for data sharing, necessitates the ability to query
heterogeneous data sources, have made the employment of existing structured
XML query languages, such as XPath and XQuery [18], cumbersome for XML
data retrieval. Without knowledge of the exact structure of the underlying data
it is very difficult to come up with the right query, because XPath expressions
follow the document structure. Even if the user had this knowledge, the need to
query multiple heterogeneous sources may require the generation of a different
query for each data source (either directly from the user or from a complex query
translation module) and as a result makes the querying process both cumbersome
and error prone.

D. Barbosa et al. (Eds.): XSym 2007, LNCS 4704, pp. 77–91, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

78 Z. Vagena et al.

Fig. 1. Querying Heterogeneous XML Data Collections

To illustrate the problem consider the example in Figure 1, which shows two
different schemata for departments and employees within two different compa-
nies, C1 and C2, which have recently merged. The data in company C1 (Fig-
ure 1a) are grouped by department, while the data in company C2 (Figure
1b) are grouped by employee that works in the company. If a user wants to
retrieve information about the employees that work in department D1 using
XPath to perform the retrieval, she has to issue two, structurally different queries
over the two datasets, namely /company/department[name = ”D1”]/employee
and /company/employee[department = ”D1”] respectively. With an increasing
number of data sources the retrieval task will become increasingly complex.

To tackle the problem, a number ofXML search engines [16,8,7,17] have been de-
veloped, which aim to leverage the keyword search paradigm to support XML data
retrieval.Themainadvantageof keyword search is its simplicity. Inparticular,users
do not have to know a complex query language and can query any dataset without
prior knowledge of the structure of the underlying data. Nevertheless, pure key-
word search is not always the appropriate querying paradigm. First, as pinpointed
in [11] it is often difficult and sometimes impossible to convey semantic knowledge
(e.g. that the user is looking for the manager of a particular department). Second,

On the Effectiveness of Flexible Querying Heuristics for XML Data 79

the granularity of the results is fixed to entire subtrees rooted at the most promising
nodes that each search engine determines.

To address the semantic and granularity problems, a number of XML re-
trieval schemes have appeared that utilize semantic knowledge in the query and
the data in order to (a) identify sets of nodes that are relevant to the user query
and have close associations and/or (b) automatically define the granularity of
the output to return the more relevant nodes [5,11,13,12]. The common charac-
teristic of the above approaches is the use of heuristics, which utilize semantic
information derived from the data to decide whether a set of nodes contains
meaningfully related nodes. We call those heuristics relatedness heuristics from
now on. Having these different heuristics, which are not directly comparable, the
natural question that comes to mind is how effective they are with respect to
user’s retrieval needs. In this paper, we address this question by studying the be-
havior of each heuristic for a given user query with respect to the characteristics
of the underlying dataset. Our contributions can be summarized as follows:

– We abstract and define the common selection problem that is tackled by
various relatedness heuristics and show how each heuristic addresses this
retrieval problem.

– We identify data categories where the assumptions made by each heuris-
tic are valid and draw some insights on their possible effectiveness on tree
structured XML data.

– We show that the majority of these heuristics are not directly applicable on
graph-structured XML data (where there are direct reference links, such as
IDREFs and XLINKs) and argue that different mechanisms need to be
applied for such data.

The rest of the paper proceeds as follows: In section 2, we survey the related work
in the field of flexible querying over XML data and define the common retrieval
problem. In Section 3, we provide a detailed discussion on the effectiveness of
the relatedness heuristics under consideration and we present our conclusions in
Section 4.

2 Background

The ability to perform effective XML data retrieval in the absence of schema
knowledge has recently received considerable attention and several different
mechanisms to support flexible XML data retrieval have already appeared. These
mechanisms can be classified into three main categories. In this section, we give
an overview of each such category and describe the different retrieval contexts
within which the heuristics that we consider in this paper have been proposed.
We then abstract and define the common retrieval framework in the context of
which each heuristic is evaluated.

The first category includes techniques [6,2] that start with a given XQuery
or XPath query over which they perform a number of predefined relaxation
primitives in order to create new queries, which produce a superset of the results

80 Z. Vagena et al.

produced by the original query. These primitives provide relaxations on (a) the
structure of the query [6,2], such as deletion of a node or conversion of a child
axis to a descendant one etc, (b) the query node labels (based on semantic
relationships derived by an ontology), and (c) the query value constraints [2].
The need to identify and return the most relevant answers among all the results
that are produced by the relaxed queries has led to the development of ranking
models [2], which quantify the similarity of the relaxed queries to the original
query. The techniques in this category start with a set of given relationships
among nodes and relax/modify them.

The second category contains a number of specialized search engines
[16,10,5,8,19,7,17,9], which implement keyword search over XML data. Systems
in this category identify sets of nodes that are relevant to the user query (a
node is relevant if its content and/or label satisfy a query keyword) and have
close associations with each other. Subsequently, they return either the identified
sets [16,10,5,17,7] or appropriate subtrees that contain the nodes in these sets
[8,19,9]. Some of them employ relatedness heuristics in order to choose combina-
tions of relevant nodes that have close associations [8,5,19], while the majority
produces all possible combinations of relevant nodes and utilizes a score function
to choose the most relevant node combinations. Distance-based ranking functions
[10,5,8,9,7,17] are usually used for this purpose.

Finally, the third category includes techniques [11,13,20] that enhance existing
XML retrieval languages (i.e. XPath and XQuery [18]) with new operators, which
enable the user to set the context of a particular query, even if she has only
partial knowledge of the schema. They provide new relatedness heuristics (i.e.
the concept of the Meaningful Lowest Common Ancestor, the Amoeba operator,
and the Closest axis) and retrieval algorithms, which enable the identification
of groups of closely associated nodes in given sets of nodes.

The techniques from the second and the third categories that we consider
in this work start with an initial set of nodes whose relationships are to be
established, and use relatedness heuristics to identify meaningful relationships.
Moreover, some of these techniques [8,5] employ ranking functions during the
retrieval process. The roles of the relatedness heuristics and the output ranking
are complementary as the formers define what constitutes a meaningful answer,
while the latter determines the order with which the results are presented to the
user. In this work we focus on the relatedness heuristics and their effectiveness
in identifying meaningful node relationships.

Retrieval Framework. At first glance, the comparison of the relatedness
heuristics under consideration seems impossible due to the lack of a common
querying framework within which each one is to be evaluated. Indeed each heuris-
tic has so far been used for different and not directly comparable tasks. For
example, the MLCA [11] heuristic has been used in order to set the context of
a given XQuery query, while the SLCA [19] identifies the roots of the subtrees
to be returned in response to a keyword search query. Nevertheless, they have
two common operations: The first one identifies sets of nodes that satisfy some
of the conditions in the user query. We will refer to these sets as input sets.

On the Effectiveness of Flexible Querying Heuristics for XML Data 81

The second step identifies subsets of nodes from the input sets that are mean-
ingfully related.

The input sets can be derived from appropriate retrieval conditions that exist
in the user query. Each of the works under consideration specifies one of the
following mechanisms to express the retrieval conditions:

– In the techniques proposed in [11], [13] and [20], the tags of the nodes that
exist in each input set are explicitly specified using standard XQuery/XPath
[18] node selection predicates. An input set contains those and only those
nodes that satisfy the corresponding query predicates.

– In [5] the input set nodes are identified by using search terms to specify the
tags and/or the content of the nodes. An input set contains those and only
those nodes that satisfy the corresponding search term.

– [19] and [8] use keywords to identify input sets. An input set contains those
and only those nodes whose label is equal to the corresponding keyword
([19]) or whose content contains that keyword ([8,19]).

The second step can be described abstractly as follows:

Problem Description 1. Let the set of nodes in an XML document be
N . Given m input sets (constructed in step 1) Ni ⊆ N, i = 1, ...m, determine
the set of tuples {< n1, ..., nm > | < n1, ..., nm >∈ N1 × N2 × ... × Nm} of
meaningfully related nodes in the context of N .

We note that the exact definition of meaningfully related nodes is different for
each of the relatedness heuristics that we consider in this paper and will be
described in detail in subsequent sections. We first focus our discussion on the
application of the relatedness heuristics when m = 2. Subsequently, we extend
our conclusions to cover the more general case of identifying related node sets
with cardinality more than two as well.

Having described the common retrieval problem under which we are going to
evaluate each of the relatedness heuristics we continue with a detailed description
of each heuristic and the discussion of its relative strengths and limitations.
Prior to that, we describe a simple retrieval language, which we use to express
the example queries presented in the rest of the paper, as there is no uniform
language used by the works in question. The language, whose syntax has been
borrowed from [5], is as follows:

Definition 1 (Retrieval Query). Let the set of nodes in an XML document
be N . A query Q is a list of terms (t1, .., tm). Each term is of the form: l::k, l::,
::k, or k, where l is a label and k a keyword. A node satisfies a term of the form:

– l::k if its label equals l and it contains the word k.
– l:: if its label equals l.
– ::k if it contains the word k
– k if its label equals k or it contains the word k.

82 Z. Vagena et al.

Each term results in a separate input set containing the nodes that satisfy the
term. The answer to Q is the set of tuples {<n1, .., nm>}, where ni ∈ N and
ni satisfies ti with the additional constraint that the nodes in a result tuple are
meaningfully related.

Theabovedefinition is slightlymodified for the techniques thatuseXPath/XQuery
local selection predicates for node retrieval (i.e., [11] and [13]) so as to use the
XPath/XQuery [18] equality semantics when matching a keyword in a term. In
this case, a node satisfies a keyword if the node’s content is equal to the keyword.

3 Heuristics for Flexible Querying over XML Data

Definition 1 in Section 2 contains a requirement, namely, the meaningful related-
ness of two nodes, whose definition depends on users’ needs. In standard XML
querying systems, the user describes how two nodes are related by specifying the
exact structural relationships between them. In the absence of this information,
retrieval systems that use the heuristics discussed in this paper assume that the
user is looking for meaningfully related nodes that are relevant to her query. In
what follows we first provide an overview of the XML node relatedness heuris-
tics that have appeared in the literature and then discuss and compare their
effectiveness under different structures and semantics of XML documents.

3.1 Relatedness Heuristics

The heuristics that we discuss in this paper include the Meaningful Lowest
Common Ancestor (MLCA [11]), the Smallest Lowest CommonAncestor (SLCA
[19][15][12]), the heuristic employed by the Amoeba operator [13], the one used in
the XRank system [8], the interconnection relationship [4,5,3], and the closest
axis [20]. All heuristics make the conjecture that only nodes that reside within
the same document are meaningfully related while nodes that reside within dif-
ferent document are unrelated. Moreover, with the exception of the last heuristic,
all heuristics start with the assumption that the subtree rooted by the lowest
common ancestor of any two a and b nodes (LCA(a,b)) ([14,1]), defines the se-
mantic scope within which the two nodes co-exist. This is true as long as the
XML document can be modeled as a tree. We begin our discussion with the
same assumption. Subsequently, we discuss the case when the data has a graph
structure. The heuristics operate over two input sets A and B as follows:

– The heuristic that is utilized by the Amoeba operator ([13]) states that two
nodes a ∈ A and b ∈ B are meaningfully related if LCA(a, b) = a or
LCA(a, b) = b. In other words, two nodes are meaningfully related if one
node is an ancestor of the other. We will call this heuristic the Amoeba
heuristic from now on.

– The interconnection relationship ([4,5,3]) views each node as an in-
stance of the real world entity identified by its label. The heuristic states
that two nodes a ∈ A and b ∈ B are meaningfully related unless they are

On the Effectiveness of Flexible Querying Heuristics for XML Data 83

descendants of two different instances of the same real world entity. To apply
this heuristic, the tree that is rooted by LCA(a, b) and consists only of the
paths from LCA(a, b) to a (we call this path p1) and LCA(a, b) to b (we
call this path p2) is constructed. The nodes a and b are meaningfully related
unless there exist nodes n1 and n2 such that n1 �= n2, n1 ∈ p1, n1 �= a and
n2 ∈ p2, n2 �= b, and n1 and n2 have the same label. We call this heuristic
the XSearch heuristic from now on.

– The heuristic that is used by the closest axis [20] defines that a node a ∈ A
is meaningfully related to the closest (in terms of number of edges) b ∈ B.
We call this heuristic the Nearest Neighbor Heuristic (NNH) from now on.

– The XRank system [8] identifies that two nodes a ∈ A and b ∈ B are mean-
ingfully related if �y ∈ B such that LCA(a, y) is descendant of LCA(a, b)
and �x ∈ A such that LCA(x, b) is descendant of LCA(a, b). We call this
heuristic the XRank heuristic.

– The remaining two heuristics (i.e. MLCA and SLCA) state that two nodes
a ∈ A and b ∈ B are meaningfully related unless there exist two nodes
x ∈ A and y ∈ B, with a �= x or b �= y such that LCA(x, y) is a descendant
of LCA(a, b). The intuition behind those two and the XRank heuristics is
that smaller trees contain more meaningfully related nodes. The difference
between the MLCA/SLCA and the XRank heuristics is that the first two
disqualify a pair of nodes a ∈ A and b ∈ B if there exists any other pair (x, y)
with x ∈ A and y ∈ B and LCA(x, y) being a descendant of LCA(a, b), while
XRank has the additional constraint that x = a or y = b. Moreover, the
MLCA and SLCA heuristics differ on the elements that may exist within
the input sets A and B. In particular, for MLCA each element in A has to
have the same label, and the same holds for each element in B. SLCA, on
the other had, does not impose any restriction on the labels of the elements
in A and B.

We continue with the discussion over the effectiveness of identifying meaningfully
related nodes that are relevant to the user query. In our discussion we try to
understand under what conditions the heuristics either fail to identify all the
desired results (in which case we say that the heuristics have false negatives) or
produce results that are not meaningfully related (in which case we say that the
heuristics produce false positives). Taking into consideration the fact that the
heuristics that we discuss are employed in an environment where the user does
not know the exact structure of the underlying data, we expect at times some
ambiguity about the definition of the result set. In those cases, we believe that
the system should let the user choose appropriate answers.

3.2 Effectiveness of Heuristics for Tree Structured XML Data

In this section, we compare the effectiveness of each heuristic under different
data characteristics. In Table 1, we summarize the results of our discussion. The
first column of the table describes the characteristics of the underlying XML
data and the rest shows the effect that the particular characteristic may have on

84 Z. Vagena et al.

Table 1. Effectiveness of Heuristics in terms of False Positives and False Negatives

Amoeba XSearch XRank MLCA SLCA NNH
Recursive Elements FP+FN FP FN FN FP+FN

Sibling Relationships FN FP+FN

Synonym Labels FN FP FP FP FP FP+FN

Multiple Label Contexts FN FN FP+FN

Optional Nodes FN FP FP FP FP+FN

Nested Elements FN FN FN FP+FN

Different Relation Types FN FN FN FN FP+FN

Labels as Relations FN FN FN FN FN FP+FN

Graph Data FP+FN FP+FN FP+FN FP+FN FP+FN FP+FN

the behavior of the heuristic. In particular, we denote with FP the fact that the
heuristic might produce false positives and with FN the fact that the heuristic
might have false negatives. Below we describe each of the rows in the table in
detail. To perform our study, we choose a pair of two nodes whose relatedness
needs to be decided. For ease of presentation we separate the cases where the
nodes in question are along the same root-to-leaf path and when they are on
different paths.

Nodes along the same root-to-leaf path: Assume that we have two nodes
a ∈ A and b ∈ B, where A and B are input sets and a is an ancestor of b, and we
want to decide whether they are meaningfully related. The XSearch and Amoeba
heuristics indiscriminately decide that the two nodes are meaningfully related.
As a result, they do not create false negatives. However, they might produce false
positives. For example, if a user issues the query <department::, manager ::>
over the data of Figure 3a, where the department is a recursive element both
heuristics will falsely decide that the nodes department(1) and manager(2) are
meaningfully related.

The NNH considers only the distance between nodes, without paying atten-
tion to the structure of the data. For example, the fact that b is a descendant
of a, probably conveys a strong relationship between them. Nevertheless, if a
sibling element x ∈ A of a exists with a smaller distance to a than b then the
heuristic will falsely decide that a and b are not meaningfully related. As a re-
sult, NNH is susceptible to both false positives and false negative, irrespective
of the data characteristics.

The MLCA and SLCA heuristics check if there exists an LCA(x, y) of another
pair of nodes x ∈ A and y ∈ B, such that LCA(x, y) is a descendant of LCA(a, b)
(i.e. node a). If such a pair of nodes exists, they will reject the original nodes as
meaningfully related. In Figure 2, we illustrate the case where such an LCA(x, y)
exists and show all the possible positions that it can have relative to a and b.
As shown in the figure, the LCA(x, y) can be a descendant of LCA(a, b) = a
and (a) neither a descendant nor an ancestor of b or, (b) an ancestor of b or, (c)
a descendant of b. In the second case, the heuristics will probably make a good
decision, as the node b in this case is more related to LCA(x, y) than to a. In

On the Effectiveness of Flexible Querying Heuristics for XML Data 85

the other two cases, however, there is no apparent reason why the relationship
of x and y should suppress the relationship of a and b.

As an example, consider the dataset in Figure 3a. If the user wants to identify
pairs of departments and their managers she will issue the query <department::
, manager::> 1. The input sets are {department1, department2} and {manager1,
manager2}. From the document, it is very easy to conclude that the pairs
(department1, manager1) and (department2, manager2) are valid answers, as
they describe two equally strong relationships. Nevertheless, both MLCA and
SLCA will omit the relationship of department1 with manager1.

The example exposes an inherent weakness of the two heuristics when recur-
sive elements exist in the document. This is due to the fact that the definition
of both heuristics implies that if an LCA1 is identified, then any pair of nodes
whose LCA2 is an ancestor of LCA1 is automatically disqualified as a mean-
ingful relation. As a result, in cases where recursive elements exist in the data,
important relationships may be missed. This problem is more profound for the
SLCA heuristic where the sets A and B may contain nodes with different labels.
For example, if in Figure 3b a user issues the query <department, John> the
SLCA will miss the relationship between department1 and its manager, only
because there exists an employee in another department with the same name.

The XRank heuristic, which also depends on the relative position of LCAs,
will discard the relationship between a and b only in the case of Figure 2b, which
as we already explained, is probably a good decision.

Nodes within different root-to-leaf paths: If the two nodes a and b do not
belong to the same path then there exists a unique LCA(a, b) �= a, b. The Amoeba
heuristic will decide that the two nodes are not related, irrespective of the data
characteristics. This is too restrictive, as it misses many sibling relationships
as well as other meaningful relationships that may exist between the nodes. An
example that demonstrates this problem is presented in Figure 4, where the
Amoeba heuristic will produce no results for the query <name::, manager::>.

The XSearch heuristic looks for ancestors of a and b with the same label in order
to decide on their relatedness. In the absence of such nodes, it may redundantly
combine them even if they are not meaningfully related. As an example, the us-
age of the XSearch heuristic for the query <name::, address::> over the data of
Figure 5a, returns the pairs {name1, address} and {name2, address}, although
only the first pair represents meaningfully related nodes. At times, the use of an
ontology can enhance the effectiveness of this heuristic, by identifying groups of
synonym labels that may represent the same world entity. In the previous ex-
ample, in the presence of an appropriate ontology the system could decide that

1 As already mentioned, the systems that use the MLCA and SLCA heuristics ex-
press the node selection conditions using different means (i.e. the MLCA heuristic
by XQuery variables binding to the nodes //department and //manager, and the
SLCA heuristic by the set of keywords {department,manager}). However, for the
purposes of our discussion, where we focus on the effectiveness of the heuristics to
identify related nodes, it suffices to express them with the language that we described
in Section 2. As a result, we will only be using this language from now on.

86 Z. Vagena et al.

Fig. 2. Relative Position of LCA(x,y) within XML Subtree

Fig. 3. False Negatives due to Recursive Elements Fig. 4. FNs in Amoeba

Fig. 5. (a) Synonym Labels (b) Missing Information, (c) Missing and Synonym Labels

manager ISA employee and as a result, treat the two labels as representing the
same real world entity and correctly figure out that the {name2, address} pair
does not represent a meaningful relationship. A more subtle problem with relying
on the node label is that false negatives might be created due to multiple label
contexts under which the same label might appear. In this case nodes with the
same label that refer to different real world entities might cause related pairs of
nodes to be falsely pruned. Multiple label contexts may also affect the perfor-
mance of NNH as this heuristic pairs nodes based solely on the number of edges
between them irrespective of the contexts within which they exist.

The MLCA, SLCA and XRank heuristics, on the other hand, do not pay
attention to the label of the ancestors of a and b, and as a result would return
the correct results in the previous example. Nevertheless, they may still create
false positives when there is not enough information within the document for
them to prune redundant relationships. This may happen, when optional nodes
are present in the XML document. As an example consider the document frag-
ment that is shown in Figure 5b. In this case, both manager and employee
nodes are optional. If the user issues the query < manager ::, employee ::>
then the SLCA, MLCA and XRank heuristics will return the non meaningful

On the Effectiveness of Flexible Querying Heuristics for XML Data 87

Fig. 6. Relative Position of LCA(x,y) within XML Subtree

Fig. 7. (a) Recursive Elements (b) Nested Elements (c) Different Relations (d) Labels
as Relations

{manager, employee} pair. On the other hand, the XSearch heuristic has enough
information to figure out that this is not a meaningful pair and will successfully
discard it. The effect of optional nodes can be aggravated with the existence
of synonym labels, as demonstrated in Figure 5c. If a user invokes the query
< name ::, address ::>, all four heuristics will falsely return {name, address},
although semantically this address is related to the employee name node.

Optional nodes can affect the behavior of NNH too. The heuristic will pair
two elements a ∈ A and b ∈ B, no matter how far away they are and how they
are connected, as long as a is the closest node to b among all the other nodes
in A. In the example of Figure 5b, it will also return the {manager, employee}
pair as a meaningful relationship.

The dependence of the SLCA and MLCA heuristics on the relative position
between LCAs alone can lead to problems of false negatives similar to the ones
we encountered when the two nodes a and b belong to the same path. To explain
this claim, we illustrate in Figure 6 the situation where an LCA(x, y) exists and
show all the possible positions it can have relative to the nodes a and b. As
shown in the figure, the LCA(x, y) can be (a) a descendant of b or, (b) equal to
b or, (c) a descendant of LCA(a, b) and an ancestor of b or, (d) a descendant of
LCA(a, b) and neither an ancestor of a nor b. In cases (a) and (d) there is again
no reason why the relationship of x and y should suppress the relationship of a
and b. For example, consider the datasets provided in Figure 7. In Figure 7a if a
user issues the query <name::, manager::> both heuristics will return only the
{name2, manager2} pair although {name1, manager1} should also be returned,
as it represents a relationship of the same type (i.e the name of a manager of a
particular department). The same situation can emerge when the nodes under
consideration belong to nested elements, as shown in Figure 7b.

88 Z. Vagena et al.

Finally, the MLCA, SLCA, XRank and NNH heuristics may produce false
negatives when an a node in A participates in different relationship types
with different nodes in B. Consider the example shown in Figure 7c. In this
dataset, a manager node has two different meaningful relationships with the
nodes name1 and name2. However, with the exception of the XSearch search,
all the heuristics under consideration will discard the {name1, manager} pair
from the result of the query <name::, manager::>. A more subtle situation is
illustrated in the dataset of Figure 7d, where the label of the node manages is
used to define a relationship among other nodes. In this case (i.e. which presents
cases when we have node labels as relations) if the user issues the query
<name::, salary::>, none of the heuristics will manage to return the cartesian
product of the input sets, which should be returned as all the pairs of name and
salary elements have meaningful relationships.

Heuristics over Multiple Input Sets: We have discussed thus far the effec-
tiveness of the relatedness heuristics for two input sets. In what follows, we briefly
describe the behavior of the heuristics when more than two input sets exist.
We omit the NNH from the discussion, as it has only been defined for the case
of two input sets. Assume that we have a set of nodes S = {n1, ...nm}, m > 2.

The Amoeba heuristic states that S contains related nodes if one of them is
the LCA of the others. As a result, it again suffers from the limitation of not
being able to identify all possible relationships between sibling nodes.

The XSearch heuristic, on the other hand, states that S contains related
nodes if either (a) ∀{ni, nj}, ni ∈ S, nj ∈ S, ni and nj are meaningfully related
according to the XSearch heuristic for pairs of nodes or, (b) there exists a node
n in the document so that ∀{ni, n}, ni ∈ S, ni and n are meaningfully related
according to the XSearch heuristic. Consequently, for each pair of nodes that
needs to be checked, the heuristic presents the same behavior that we described
in the previous section.

The MLCA of S (MLCAS) is the LCA of MLCA(ni, nj), ∀ni, nj ∈ S, ni �=
nj , if they all exist, and ∃na, nb ∈ S such that MLCAS = MLCA(na, nb). This
definition is again stated in terms of MLCAs of pairs of nodes for which the
relevant discussion in the previous section still holds.

Finally, the SLCA and XRank heuristics employ the LCA of the nodes in
S (LCAS). In this case, the nodes in S are related unless there exists a set S′,
such that LCA′

S is a descendant of S. The discussions in the previous section
on recursive, optional and nested elements can be easily generalized, when we
consider sets of more than two nodes.

3.3 Effectiveness of Heuristics for Graph Structured XML Data

So far we have focused our discussion on the tree model of XML data, which
omits IDREFs, value-based relationships (such as primary-foreign key relation-
ships), and other direct reference links that may exist within or among XML
documents. With the exception of NNH , the heuristics that we consider in this
paper omit such types of links. Nonetheless, considering the fact that each link

On the Effectiveness of Flexible Querying Heuristics for XML Data 89

Fig. 8. Behavior of Relatedness Heuristics in the Presence of Non-Tree Edges

conveys an explicit and strong semantic relationship between two nodes, they
may play an important role in identifying meaningfully related nodes in graph-
structured XML data as well. As a result, it is interesting to see the behavior of
the relatedness heuristics that we consider in the presence of those links. In what
follows we omit NNH from the discussion as it does not differentiate between
the tree and graph models. Consequently, the conclusions that we have drawn
in the previous section about NNH hold for the graph model as well.

In the case of graph structured data, two nodes might be related with multiple
relationships. In this case, the user might be interested in inspecting all of them,
and not the one that the particular heuristic will return. Furthermore, under cer-
tain circumstances, when there are direct reference links between nodes, the LCA,
as defined by the heuristics under consideration, should not be considered when
checking node relatedness. That last issue is illustrated in Figures 8a and 8b. Fig-
ure 8a shows an example where the information on departments and employees
of a company resides within two different XML documents. Value-based relation-
ships, which are illustrated with arrows in the figure, create the links between each
department and the employees that work in that department. If a user issues the
query <department, employee> none of the relatedness heuristics will return any
results. However, from the figure it is apparent that the {department1,employee2}
and {department2, employee1} pairs should be returned. The reason for the false
negatives is the fact that the information resides in different documents, and, as a
result, the notion of the LCA is not applicable. In Figure 8b, a similar situation is
depicted where the department and employee information reside in the same doc-
ument. In that case, the XSearch, XRank, SLCA and MLCA heuristics would
return all possible combinations of department and employee elements when used
to answer the previous query (the Amoeba heuristic still returns no results, due
to the limitation of missing relationships among siblings that we described in the
previous paragraphs). The reason for the false positives in this case is the fact that
the LCA of nodes, although present, is only an artificial element used to create a

90 Z. Vagena et al.

valid XML document and, as a result, conveys no information about the relation-
ships amongst the underlying nodes.

The two examples that we described above summarize situations where the
direct reference links are the only ones that should be checked in order to de-
cide the relatedness of nodes. As expected, there also exist situations where the
information provided by both the direct reference links and the LCA should be
combined in order to determine node relatedness. Figures 8c and 8d illustrate
examples where the omission of direct reference links results in false negatives.
In particular, in Figure 8c when applying the XSearch heuristic for the query
<manager, name>, only the {manager, name2} pair would be returned although
the pair {manager, name1} represents a meaningful relation as well.

The above discussion, although preliminary, illustrates the need to combine
the information provided by LCAs and direct reference links, when looking for
related nodes in order to avoid missing important relationships. It is worthwhile
to investigate the possibility of extending the relatedness heuristics to take into
consideration such links as well, as these always express strong semantic rela-
tionships among nodes.

4 Conclusions

In this paper, we performed a qualitative evaluation of the effectiveness of the
various node relatedness heuristics, namely NNH , XSearch, XRank, SLCA,
MLCA and Amoeba, that have been proposed in the context of flexible re-
trieval/querying of XML data. Their importance is attributed to the fact that
they enable the creation of efficient and convenient tools for data retrieval in the
absence of schema information.

We abstracted the problem of deciding node relatedness, which is addressed
by the heuristics considered in this paper, in the context of schema free query-
ing of XML data. Subsequently, starting with the tree model of XML data, we
studied their behavior with respect to varying structure and semantics of the
underlying data. Our discussion revealed the circumstances under which each
heuristic is likely to have false positives and/or false negatives. We showed that
their effectiveness depends on the application and data characteristics. We be-
lieve that our findings can help systems implementors understand the strengths
and weaknesses of each heuristic and provide simple guidelines for the applica-
bility of each one.

Finally, we demonstrated the ineffectiveness of the majority of the current
heuristics on graph structured data. Taking into consideration the increased
complexity that the graph model imposes on a flexible retrieval system, we be-
lieve that the investigation of additional relatedness heuristics that operate over
XML graphs is an interesting path for future research.

Acknowledgments

The authors would like to thank Donald Chamberlin for his many useful sugges-
tions as well as the anonymous reviewers for their insightful comments.

On the Effectiveness of Flexible Querying Heuristics for XML Data 91

References

1. Amato, G., Debole, F., Rabiti, F., Savino, P., Zezula, P.: A Signature-Based Ap-
proach for Efficient Relationship Search on XML Data Collections. In: Proc. of
XSym, Toronto, Cananda, pp. 82–96 (2004)

2. Amer-Yahia, S., Lakshmanan, L.V., Pandit, S.: FleXPath: Flexible Structure and
Full-Text Querying for XML. In: Proc. of SIGMOD, Paris, France, pp. 83–94 (2004)

3. Cohen, S., Kanza, Y., Kimelfeld, B., Sagiv, Y.: Interconnection Semantics for Key-
word Search in XML. In: Proc. of CIKM, Bremen, Germany (2005)

4. Cohen, S., Kanza, Y., Sagiv, Y.: Generating Relations from XML Documents. In:
Proc. of ICDT, Siena, Italy (2003)

5. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A Semantic Search Engine
for XML. In: Proc. of VLDB, Berlin, Germany, pp. 45–56 (2003)

6. Delobel, C., Rousset, M.-C.: A Uniform Approach for Querying Large Tree-
structured Data through a Mediated Schema. In: Foundations of Models For In-
formation Integration Workshop (FMII) (2001)

7. Graupmann, J., Schenkel, R., Weikum, G.: The SphereSearch Engine for Unified
Ranked Retrieval of Heterogeneous XML and Web Documents. In: Proc. of VLDB,
Trondheim, Norway, pp. 529–540 (2005)

8. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: ranked keyword
search over XML documents. In: Proc. of SIGMOD, San Diego, USA, pp. 16–27
(2003)

9. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: Ranked Keyword Searches on
Graphs. In: Proc. of SIGMOD, Beijing, China (2007)

10. Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword Proximity Search on
XML Graphs. In: Proc. of ICDE, Bangalore, India (2003)

11. Li, Y., Yu, C., Jagadish, H.V.: Schema-Free XQuery. In: Proc. of VLDB, Toronto,
Canada, pp. 72–83 (2004)

12. Liu, Z., Chen, Y.: Identifying Meaningful Return Information for XML Keyword
Search. In: Proc. of SIGMOD, Beijing, China (2007)

13. Saito, T., Morishita, S.: Amoeba Join: Overcoming Structural Fluctuations in XML
Data. In: Proc. of WebDB, Chicago, USA, pp. 38–43 (2006)

14. Schmidt, A., Kersten, M., Windhouwer, M.: Querying XML Documents Made
Easy: Nearest Concept Queries. In: Proc. of ICDE, Heidelberg, Germany, pp. 321–
329 (2001)

15. Sun, C., Chan, C.-Y., Goenka, A.K.: Multiway SLCA-based Keyword Search in
XML Data. In: Proc. of WWW, Singapore, Singapore (2007)

16. Theobald, A., Weikum, G.: The Index-Based XXL Search Engine for Querying
XML Data with Relevance Ranking. In: Proc. of EDBT, Prague, Czech Republic,
pp. 477–495 (2002)

17. Theobald, M., Schenkel, R., Weikum, G.: An Efficient and Versatile Query Engine
for TopX Search. In: Proc. of VLDB, Trondheim, Norway, pp. 625–636 (2005)

18. XQuery 1.0: An XML Query Language, W3C Recommendation, See (January
2007), http://www.w3.org/TR/xquery

19. Xu, Y., Papakonstantinou, Y.: Efficient Keyword Search for Smallest LCAs in XML
Databases. In: Proc. of SIGMOD, Baltimore, USA, pp. 537–538 (2005)

20. Zhang, S., Dyreson, C.: Symmetrically Exploiting XML. In: Proc. of WWW, Ed-
inburgh, Scotland (2006)

http://www.w3.org/TR/xquery

XML Schema Evolution: Incremental Validation and
Efficient Document Adaptation

Giovanna Guerrini1, Marco Mesiti2, and Matteo A. Sorrenti2

1 DISI - Università di Genova, Italy
guerrini@disi.unige.it

2 DICO – Università di Milano, Italy
mesiti@dico.unimi.it

Abstract. XML Schemas describe the structure of valid documents and can be
exploited for improving both the efficiency and effectiveness of queries on valid
documents. XML Schemas, however, may need to be updated to adhere to new
requirements and to face changes in the application domain. Starting from a set of
schema modification primitives, in this paper we devise an incremental validation
approach that allows to efficiently validate documents, known to be valid for the
original schema, for an updated schema. Then, we enhance the approach to adapt
the documents to the new schema. Experiments prove that our approach increases
the performance of standard validation algorithms in this setting and that the cost
of the adaptation process is limited.

1 Introduction

XML Schemas [19] describe the structure and the allowed content of XML documents.
Since the contexts where XML is exploited are highly dynamic, XML Schemas fre-
quently need to be updated to reflect changing requirements: systems need to be adapted
to real-world changes, new functionalities need to be introduced, new data types need
to be processed. XML data representation formats and domain-specific schemas, be-
fore being adopted as a standard, undergo several revisions resulting in many different
versions and the need arises to adapt the corresponding documents.

XML Schemas can be updated in their basic components: elements declarations,
simple and complex type declarations. In [11,12] a set of primitives for evolving XML
Schemas has been proposed together with an analysis of the impact of such primitives
on documents known to be valid for the original schema. Documents valid for the orig-
inal schema, indeed, are no longer guaranteed to meet the constraints described by the
evolved schema. In principle, these documents should be revalidated against the new
schema. A naı̈ve approach to revalidation consists in applying a standard validation al-
gorithm (like MSXML, Xerces, and XSV) to each document and the new schema, that
has been obtained by changing the original schema through an evolution primitive. This
approach, however, does not take advantage of the fact that some evolution primitives
are known not to impact document validity [11,12]. Moreover, also for primitives whose
application can impact validity, the evolution most likely impacts a limited portion of
the schema. Consequently, only restricted portions of a document need to be revali-
dated. The naı̈ve approach, moreover, does not take into account that the document is

D. Barbosa et al. (Eds.): XSym 2007, LNCS 4704, pp. 92–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

XML Schema Evolution: Incremental Validation and Efficient Document Adaptation 93

known to be valid for the original schema and that the possible effects on validity of
a primitive can be foreseen. Thus, we propose in this paper an incremental validation
approach for the validation of documents, known to be valid for an original schema sx,
against an evolved schema obtained from sx through a specific evolution primitive.

If the evolution impacts validity, a related problem is how to adapt documents so
to make them valid for the evolved schema. Adaptation by hand is error-prone and not
feasible when the number of documents is high. In this paper we propose an approach
in which documents are extended or pruned following a default behavior. Default adap-
tation is reasonable for simple evolution primitives and is very useful in some contexts,
e.g., when documents are tests for statistical benchmarks.

The main contributions of this paper are an algorithm for the incremental validation
of XML documents upon XML Schema evolution and an efficient algorithm for adapt-
ing the documents to the evolved schema. They have been implemented in X-Evolution
[15] and experimentally evaluated. Our incremental validation algorithm outperforms
the .NET validation algorithm for primitives that do not alter document validity and im-
proves of an average 20% for other primitives. The execution time of document adap-
tation linearly depends on the document size.

In the remainder of the paper, Section 2 briefly surveys related work. Section 3 in-
troduces XML Schemas and evolution primitives. Section 4 discusses validation and
adaptation of complex type structures. Section 5 presents the two algorithms, that are
experimentally evaluated in Section 6. Section 7 concludes the work.

2 Related Work

Schema evolution has been investigated for schemas expressed by DTDs in [14], where
a set of evolution operators is proposed and discussed in detail. Problems caused by
DTD evolution and the impact on existing documents are however not addressed. More-
over, since DTDs are considerably simpler than XML Schemas [5] the proposed oper-
ators do not cover all the kind of schema changes that can occur on an XML Schema.
DTD evolution has also been investigated from a different perspective in [4,7]. The fo-
cus was on dynamically adapting the schema to documents. In [7] document updates
invalidating some documents can lead to changes in the DTD. In [4], by contrast, mod-
ifications to the DTD are deduced by means of structure mining techniques extracting
the most frequent document structures, in a context where documents are not required
to exactly conform to a DTD.

In [9,18] approaches for making an XML document valid to a given DTD, by apply-
ing minimal modifications detected relying on tree edit distances, have been proposed.
No knowledge of conformance of the document to a DTD is however exploited. The
problem of document revalidation has been investigated in [16]. Documents to be reval-
idated may not be available in advance, they are known to be valid for a given schema
sx1 and must be revalidated against a different schema sx2, but the transformations
leading from sx1 to sx2 are not known. Incremental validation of XML documents,
represented as trees, has been investigated for atomic [1,2,6] and composite [3] XML
updates. Given an update operation on an XML document, the update is simulated, and
only after verifying that the updated document is still valid for its schema the update
is executed. An extension of the incremental validation process to document correction

94 G. Guerrini, M. Mesiti, and M.A. Sorrenti

is proposed in [8] where upon validation failure local corrections to the document are
proposed to the user.

3 XML Schemas and Evolution Primitives

XML Schemas. We adopt the XML Schema representation of [11,12] that extends
the one proposed in [16]. Let EN denote the set of element tags and T N the set of
(both simple and complex) type names. Set T N is the union of the disjoint sets T T
and AT , where T T is the set of explicitly assigned type names and AT is the set of
system-assigned type names (to identify anonymous types).

Simple types, named ST , can be XML Schema native types in the set NT or can be
derived through restrict, list, and union. Each simple type is characterized by a set
of facets allowing to state constraints on its legal values. We assume the presence of a
predicate f that represents the constraints imposed by a set of facets. The set of simple
types is inductively defined as follows: native types (e.g., decimal, string, float,
date) are simple types; if τ is a simple type, list(τ) is a simple type; if τ1, . . . , τn

are simple types, union(τ1, . . . , τn) is a simple type; if τ is a simple type and f is a
predicate on the facets applicable on t, restrict(τ, f) is a simple type. The set of
legal values for type τ is denoted by [[τ]] . Given τ1, τ2 ∈ ST , the relationship τ1 � τ2

denotes [[τ1]] ⊆ [[τ2]] and can be determined by exploiting the built-in native types
hierarchy [19] and standard constraint subsumption approaches [17] when facets occur.

Complex types, named CT , are associated with a structure specifying the possible
children of a given element. A type structure is represented through a labelled tree. A
tree on a set of nodes N is inductively defined by stating that: (i) v ∈ N is a tree
(whose root is v); and (ii) if T1, . . . , Tn are trees and v ∈ N is a node not appear-
ing in T1, . . . , Tn, (v, [T1, . . . , Tn]) is a tree (whose root is v). Given a node v ∈ N ,
children(v) denotes the list of subtrees of v. A labelled tree is a pair (T, ϕ), where T
is a tree and ϕ is a total function from the set of T nodes to a set of labels. Labels of
the tree representing a type structure are pairs (l, γ), where l ∈ EN ∪ OP and γ ∈ Γ .
The set OP = {SEQUENCE, ALL, CHOICE} contains the operators for building complex
types. The SEQUENCE operator represents a sequence of elements, the CHOICE operator
represents an alternative of elements, and the ALL operator represents a set of elements
without order. By contrast, the set Γ = {(min, max) | min, max ∈ IN, min ≤ max}
contains occurrence constraints, where min is the attribute MinOccurs and max is the
attribute MaxOccurs. The default value (1, 1) is not shown in our graphics. Given a
tree T , let root(T) denote the root of T , l(T) denote the label of root(T), and l|i(T),
i = 1, 2 denote the i-th component of l(T).

A type structure is a tree T defined on the set of labels (EN ∪ OP) × Γ for which:

1. l(T) ∈ OP × Γ ;
2. for each subtree (v, [T1, .., Tn]) of T , l(v) ∈ OP × Γ ;
3. for each leaf v of T , l(v) ∈ EN × Γ ;
4. for each subtree (v, [T1, . . . , Tn]) of T , if l(v) = 〈ALL, (min, max)〉 then v =

root(T) and ∀i ∈ {1, . . . , n} l(Ti) ∈ EN × Γ , l|2(Ti) = (mini, 1), and ∀j ∈
{1, . . . , n} i �= j ⇒ l|1(Ti) �= l|1(Tj).

XML Schema Evolution: Incremental Validation and Efficient Document Adaptation 95

Table 1. mail schema representation

ENG = {mails, attachment}, T = {mailT, envelopeT, personT} ∪ {τ1, τ2}
typeG(mails) = τ1, typeG(attachment) = τ2

ρ(τ1)

sequence(0,

mail

mail �→ mailT

ρ(τ2)

sequence

choice (0,1) text

audio
moviepicture

picture �→ Byte
audio �→ Byte
movie �→ Byte
text �→ string

ρ(mailT)

sequence

choice (0,)envelope

attachmentbody

envelope �→ envelopeT
body �→ string

ρ(envelopeT)

sequence

from

to
cc (0,

date
subject

header (1,

from �→ personT
cc �→ personT
to �→ personT
date �→ date
subject �→ string
header �→ string

ρ(personT)

sequence

mailname (0,1)

name �→ string
mail �→ string

The last condition imposes that ALL labelled nodes can only appear as children of the
root element and that their children must be all distinct non repeatable elements. Let TS
be the set of all possible type structures.

An XML Schema consists of a set of global type and element definitions. As dis-
cussed above, local elements can be declared within a type definition. XML Schemas,
unlike DTDs, allow an element to have different types depending on its context, but a
unique type is assigned to each element of the schema depending on its context (global
or local to a type τ). A consistent XML Schema is a 4-tuple (EN G, T , ρ, typeG), where:

– EN G ⊆ EN is the set of labels of global elements,
– T = (T T ∪ AT) ⊆ T N is the set of type names,
– ρ is a function associating each τ ∈ T with its declaration, that is:

• if τ ∈ ST , ρ(τ) ∈ NT ∪ {restrict(τ1, f) | τ1 ∈ ST } ∪ {list(τ1) | τ1 ∈
ST } ∪ {union(τ1 . . . τN) | τ1, . . . , τn ∈ ST };

• if τ ∈ CT , ρ(τ) = (EN τ , t, typeτ), where: EN τ ⊆ EN is the set of local
element names for τ ; t ∈ TS is the structure for τ ; function typeτ : EN τ → T
assigns each local element of t its type;

– typeG : EN G → T is a function assigning each global element its type.

Example 1. Table 1 shows the representation of our mail schema. The first row re-
ports the sets of global element and type names, and function typeG that associates
each global element with the corresponding type. Then, for each complex type τ , its

96 G. Guerrini, M. Mesiti, and M.A. Sorrenti

Table 2. Classification of the evolution primitives

Insertion Modification Deletion

Simple Type insert glob simple type∗

insert new member type∗

change restriction
change base type
rename type∗

change member type
global to local∗

local to global∗

remove type∗

remove member type∗

Complex Type

insert glob complex type∗

insert local elem◦

insert ref elem◦

insert operator◦

rename local elem
rename type∗

change type local elem◦

change cardinality◦

change operator◦

global to local∗

local to global∗

remove element◦

remove operator◦

remove substructure◦

remove type∗

Element insert glob elem

rename glob elem∗

change type glob elem
ref to local∗

local to ref∗
remove glob elem∗

definition ρ(τ) is provided. Specifically, the type structure t and the function typeτ that
associates each local element name in EN τ with the corresponding type are given. ©

A schema is said to be conflict-free when in type definitions subelement names ap-
pear only once. Efficiency of incremental validation proposals discussed in Section 2
is bound to the conflict-free property of the schema. In this paper we will restrict to
conflict-free schemas, both for what concerns the original schema and the evolved one.
Most schemas employed on the Web do exhibit this property [10].

A unique type can always be associated with an element, given the context (global
or local to a complex type). When no ambiguity arises, we will denote type (thus omit-
ting the subscript) the function that associates a (global or local) element with its type.
Function valid in the remainder of the paper denotes the validity of a document w.r.t. a
schema or of an element w.r.t. a type, evaluated through a standard validation approach.
Function getPaths takes as input parameters t and e; t can be either a type, a type
structure, or an element tag, whereas e is an element in the schema. It returns the XPath
expressions only consisting of steps along the child axis from the root of the schema,
passing through e, reaching an element of type, structure, or tag t. Referring to the mail
schema in Table 1, getPaths(personT, mail) = { /mails/mail/envelope/from,
/mails/mail/envelope/to, /mails/mail/envelope /cc}. Function getPaths may
return different sets of paths depending on the context in which it is invoked. For ex-
ample, different paths are returned for element mail in τ1 and personT . Note that the
returned set is finite also in case of recursive schemas. By contrast, function getElems
evaluates a set of XPath expressions (again, only consisting of / steps) on a document
and returns the corresponding elements.

Evolution Primitives. In [11,12] three categories of atomic primitives have been de-
vised: insertion, modification, and deletion of the XML Schema components (simple
types, complex types, and elements). Modifications can be further classified in struc-
tural and relabelling modifications. Structural modifications allow to modify the struc-
ture of a type (subelements, operators, and cardinality constraints) while relabelling
modifications allow to change the name of an element/type. Table 2 reports the evolu-
tion primitives P relying on the proposed classification. For simple types the operators

XML Schema Evolution: Incremental Validation and Efficient Document Adaptation 97

from

sequence

to
cc (2,

date
subject

header (1,

(a)

envelope

from

mail

bob@aol.it

(d)

choice

from

to
cc (0,

date
subject

header (1,

(b)

mail

envelope

header

Return-Path:...
cc

mail

to

mail

alice@aol.it

subject

hello

date

1/7/2006

cc

mail

(c)

from

bob@aol.it

Fig. 1. Type structures with valid elements

are further specialized to handle the derived types restrict, list, and union. Prim-
itives marked ∗ in Table 2 (denoted by P∗) do not alter the validity of documents,
whereas primitives marked ◦ in Table 2 (denoted by P◦) operate on a type structure.
Primitives are associated with applicability conditions that must hold before their ap-
plication to guarantee that the updated schema is still consistent. For example, global
types/elements can be removed only if elements in the schema of such a type (or that
refer to such element) do not exist. Moreover, when renaming an element in a complex
type τ , an element with the same tag should not occur in τ . These conditions are verified
before applying the schema update.

Example 2. Let t be the structure of type envelopeT of schema sx in Table 1. By
applying the primitive p1 = change cardinality((2, ∞), 3, t, sx), the type structure
t1 in Fig. 1(a) is obtained. By applying p2 = change operator(choice, 1, t, sx), the
type structure t2 in Fig. 1(b) is obtained. These primitives considers the local rank of
nodes to identify the node in a type structure to be updated. ©

4 Type Structures Validity and Adaptation

The type structure t of a type τ ∈ CT determines which subelements can occur, and in
which order, in a document element declared of type τ . In this section we first consider
validation and adaptation with respect to a single type structure and then introduce a
relationship among type structures that will be used in the validation process.

Function validS. This function checks whether a sequence of document elements ad-
heres to a type structure by taking as input: a list of sibling elements [T1, . . . , Tn] in
a document, a structure t, and a set S of expected element tags relying on t. The set
of expected element tags is initially determined by an auxiliary function init : TS →
2EN∪{λ}. This function returns the set of tags S initially expected by t ∈ TS . S can
contain the symbol λ denoting that t also admits empty content. More than one tag
can occur in S because of the presence of choice and optional elements in t. Once
the first tag of the list of sibling elements matches a tag in S, the next expected tags
for t are determined by function nxtEls : EN ∪ TS → 2EN∪{λ}. This function takes
as input the identified tag l ∈ S and t ∈ TS , and returns the next set of expected
tags. Consider the type structure t2 in Table 1, init(t2) = {picture, audio, movie,
text}, nxtEls(text, t2) = {λ} whereas nxtEls(audio, t2) = {text}. Function
validS works by using t as an automaton for accepting [T1, .., Tn]. The three cases in
its definition correspond, respectively, to symbol acceptance and next state transition;
acceptance and transition to a final state; non acceptance. Function validS is defined as
follows:

98 G. Guerrini, M. Mesiti, and M.A. Sorrenti

envelope

from
to date subject

header

mail
mail

Return-Path:...

hello1/7/2006

alice@aol.it

bob@aol.it

Fig. 2. The envelope element

validS([T1,..,Tn],S,t)=

⎧
⎪⎪⎨

⎪⎪⎩

validS([T2,..,Tn],nxtEls(l1,t),t) if l1=l(T1)∈S∧valid(T1,type(l1))

true if n = 0, λ ∈ S
false otherwise

Example 3. Consider the envelope element whose tree representation is shown in
Fig. 2 and the structure t of type envelopeT of Table 1. validS is initially invoked
on the five subelements of envelope [T1, . . . , T5], {from}, and t. Since l(T1) = from

and T1 is valid for personT, then validS is invoked on [T2, . . . , T5], {cc, to}, and
t. Since l(T2) ∈ {cc, to} and T2 is valid for personT, then validS is invoked on
[T3, . . . , T5], {date}, and t. The behavior is analogous for the remaining elements and
we can conclude that the envelope element is valid for envelopeT. ©

Function adaptS. This function is an extension of validS that alters the list of subele-
ments [T1, . . . , Tn] of a document element when it is not valid for a structure t. Altering
[T1, . . . , Tn] means inserting and/or deleting elements to/from the list. The function
has the same input parameters as validS and an additional opt parameter stating if we
want to insert or delete elements. This depends on the evolution primitive and will be
discussed in next section. Here we present how insertions or deletions are performed.
adaptS exploits the auxiliary function genTree that, given an element of type τ , gen-
erates a valid instance for such a type assigning default values for data content elements
and choosing the minimal structure among those that can be obtained from τ . The
envelope element in Fig. 2 where data contents are substituted by the empty string is
an example of tree generated by genTree(envelope, envelopeT). Function adaptS
returns a list C of sibling document elements valid for t obtained from [T1, . . . , Tn]
through insertions or deletions.

If n ≥ 1 and the label l1 of the root of T1 belongs to S, the algorithm checks
whether the content of T1 meets the constraints imposed by the type of l1. If it does not,
the content of T1 should be generated, otherwise it is left unchanged. In both cases, the
function returns T1 concatenated to the list of trees generated by the recursive call of
adaptS on the remaining tree list and the next expected elements for t.

If n ≥ 1 and the label of T1 does not belong to S, in case of insertion (i.e., opt = INS)
a tag s is chosen from S and an element valid for the type of s is inserted at the head of
the list (according to a policy discussed below) and the label of T1 is checked in the next
expected elements. In case of deletion (i.e., opt = DEL) T1 is removed and the label of
the next element is checked in the same set S. Whenever n = 0 and λ �∈ S (that is, all
the sibling elements have been processed but t requires other elements), new elements
are appended to the result until λ ∈ S.

XML Schema Evolution: Incremental Validation and Efficient Document Adaptation 99

Algorithm 1. adaptS

Data: [T1, . . . , Tn]: Trees, S : 2EN , t : ST , opt : {INS,DEL}
Result: C: Trees valid for t
Let l1 = l(T1)1
if n ≥ 1 ∧ l1 ∈ S then2

if not valid(T1, type(l1)) then T1 =genTree(l1, type(l1))3
return T1 · adaptS([T2, . . . , Tn], nxtEls(t, l1), t, opt)4

end5
if n ≥ 1 ∧ l1 �∈ S then6

if opt = INS then7
s = choose(S)8
return genTree(s, type(s))· adaptS([T1, . . . , Tn], nxtEls(t, s), t, opt)9

end10
else return adaptS([T2, . . . , Tn], S, t, opt)11

end12
C ← ∅13
while λ �∈ S do14

s = choose(S)15
C ← C · genTree(s, type(s))16
S ← nxtEls(t, s)17

end18

return C19

When |S| > 1, an appropriate heuristic, which ensures to introduce only mandatory
elements with the minimal number of occurrences, is applied to choose a tag in S [13].

Example 4. Consider element envelope in Fig. 2, structures t1, t2, and primitives
p1, p2 of Example 2. adaptS is invoked with option INS for p1 on [T1, .., T5], {from},
t1. Since l(T1) = from and T1 is valid for personT, adaptS is invoked on [T2, .., T5],
{cc}, t1. Since l(T2) = to �∈ {cc}, a tree is generated for cc and adaptS is invoked
on [T2, .., T5], {cc}, t1. Again, l(T2) = to �∈ {cc}, thus another tree is generated for
cc and adaptS is invoked on [T2, .., T5], {to}, t1. The remaining recursive calls return
[T2, .., T5]. Fig. 1(c) shows the new element envelope. By contrast, adaptS is invoked
with option DEL for p2 and same parameters. Since l(T1) = from and T1 is valid for
personT, adaptS is invoked on [T2, .., T5], {λ}, t2. Since l(T2) = to �∈ {λ}, T2 is
removed as well as the other elements of the list by the recursive invocations. Fig. 1(d)
shows the new element envelope. ©

�ST relationship. This relationship holds between a type structure t1 and a type struc-
ture t2, obtained from t1 by applying a primitive p ∈ P◦, when the legal values of
t1 are known to be contained in the legal values of t2. This relationship can be es-
tablished by considering ad-hoc rules like the following ones. If p changes the cardi-
nality of an element/operator from (minO, maxO) to (minN , maxN) and minN ≤
minO ∧ maxN ≥ maxO (that is, the interval of allowed occurrences is extended) the
elements valid for t1 are still valid for t2. If p changes a sequence operator into an
all operator or the group bound by any operator is composed by a single element,
then the elements valid for t1 are still valid for t2. If p introduces a new optional ele-
ment/operator in the structure, then the elements valid for t1 are still valid for t2. If none
of the elements of sx have been defined according to a complex type whose structure is
t1, then no modification to t1 alters the validity of documents. The �ST relationship is
thus exploited in the revalidation process to avoid accessing documents when it is not
strictly required.

100 G. Guerrini, M. Mesiti, and M.A. Sorrenti

Algorithm 2. Revalidate
input: p : P, d : DOC, sx : SX1
output: true ⇐⇒ d is valid for the updated schema2
switch case p // The applicability conditions of p to sx are met3

case (p ∈ P∗) return true4
case (p ∈ {rename glob/local elem})5

let l be the element tag to remove/rename6
return (getElems(getPaths(l, sx), d) = ∅)7

case (p = change type glob/local elem(l, τN , sx) ∧ τN ∈ CT)8
let tN be the structure of τN9
return (∀e ∈ getElems(getPaths(l, sx), d) : validS(children(e), init(tN), tN))10

case(p ∈ {change restrict, change base/member type, change type glob/local elem})11
let τO be the old simple type and τN the updated one12
if (τO � τN) then return true end-if13
return (∀e ∈ getElems(getPaths(τO , sx), d) : content(e) ∈ [[τN]])14

case(p = remove glob elem(l, sx))15
return (l(root(d)) �= l)16

case(p ∈ P◦)17
let t, tN be the old and new structure18
if (t �ST tN) then return true end-if19
return (∀e ∈ getElems(getPaths(t, sx), d) : validS(children(e), init(tN), tN))20

end-case21

5 Incremental Validation and Efficient Document Adaptation

Incremental Validation Algorithm. The incremental validation algorithm takes as
input a schema sx, a document d valid for sx, and an evolution operation p ∈ P , and
outputs true if and only if d is still valid after the application of p to sx. The algorithm,
relying on the applicability conditions of the evolution primitives being satisfied, tries
to determine document validity from the applied evolution primitive and the schema,
moving to check the document only when this is strictly needed.

If p ∈ P∗, its application does not alter the validity of d. Therefore, no checks need
to be performed on d. If p renames an element tagged l, the validity of d depends on
the occurrence of l elements in d. Therefore, whenever an l element occurs in d, it is no
longer valid. If p changes the type of an element l to the complex type τN , the children
of elements l in d are extracted and, through function validS, they are checked to
meet the constraints specified by the structure of τN . If p changes a simple type (either
changing the restriction, the base/member type, or the type of a global element) the
algorithm first checks whether the values of the old type τO are contained in the new
type τN . If so, d is valid, otherwise, all the elements of type τO in d are identified and
their content is checked to be a legal value of τN . If p removes a global element l, the
root label of d is compared with l. If they are equal, d is not valid. Otherwise, it is
still valid. This check is very simple since the applicability conditions of the primitive
allows the removal of a global element only if no elements in the schema refers to it. If
p updates the structure of a complex type through the primitives in P◦, the old structure
t is compared with the new structure tN to determine whether t �ST tN . If so, d is
valid. Otherwise, the children of elements with structure t in d are extracted to check
through function validS whether they meet the constraints specified by tN .

Proposition 1. Let sx be an XML Schema and d be an XML document valid for sx. Let
sxN be an XML Schema obtained from sx by applying p ∈ P . Then,

valid(d, sxN) iff revalidate(p, d, sx).

XML Schema Evolution: Incremental Validation and Efficient Document Adaptation 101

update Doc

rename as

=

Vertex Label

Vertex

Trees

Content

Functionset

Fig. 3. An SQL-based language for the specification of document updates

Document Adaptation Algorithm. The document adaptation algorithm is an exten-
sion of the revalidate algorithm (Algorithm 2) in which, when an element is not valid
for the new schema, the minimal modifications are performed on d to make it valid. The
modifications are minimal because they only involve the document portions affected by
the primitive p and because they require to insert/eliminate the minimal number of ele-
ments to guarantee validity. Document modifications can be of different types: element
renaming, removal of an element with all its content, insertion of an element. In the
last case, a default value should be associated with the inserted element e (either a legal
value for the (simple) type of e or a default tree generated by function genTree). Doc-
ument modifications are specified by means of a simple SQL-based language whose
syntax graph is shown in Fig. 3. Squared nodes represent keywords and oval nodes rep-
resent parameters. The new nodes and contents can be specified by means of functions
adaptS, and defaultV al that returns a default value for a simple type.

The adaptation algorithm (Algorithm 3) works on a document d valid for a schema sx
on which an evolution primitive p is applied. Depending on the primitive, the algorithm
determines if d is still valid for the updated schema sxN or performs modifications to
d to make it valid for sxN . The applicability conditions of the primitive should be met,
otherwise the document is not modified.

If p ∈ P∗, then d is not modified at all because p does not alter validity. If p renames the
lO (either local or global) element, the occurrences of lO in d are identified and renamed to
lN . If p removes a global element and the root of d has the same label, then documentd is
removed. Otherwise, the document is left unchanged. If p changes the type of an element
in a complex type, all the elements of the original type are detected in the document. For
element e, the children of e are checked to adhere to the new type. If not, the children of e
are removed and a new content is specified for e by means of function adaptS that adds
subelements to e. Since an empty list of trees is passed to function adaptS, this function
generates from scratch the content of e. This behavior is motivated by the assumption
that the modification of a type is applied when the original type is deeply different from
the new one. Otherwise, other primitives that locally alter the structure of the type would
be employed. If p updates a simple type (including union, list, restrict derived
types) or changes the type of a global element in a simple type, first the algorithm checks
whether the values of the new simple type extends the values of the original type. If so,
the document is valid as it is. Otherwise, for each element e of d of the original type its
content is changed by assigning a default value of the new type.

If p updates a type structure t, the new structure tN can require to introduce new ele-
ments or to remove existing ones, depending on the specific primitive employed and, in

102 G. Guerrini, M. Mesiti, and M.A. Sorrenti

Algorithm 3. Adapt
input: p : P, d : DOC, sx : SX1
output: d′ obtained from d that is valid for sxN2
switch case p // The applicability conditions of p to sx are met3

case (p ∈ P∗) break;4
case (p ∈ {rename glob/local elem})5

let lO be the element tag renamed lN6
for e ∈ getElems(getPaths(lO , sx), d) do UPDATE d RENAME e AS lN7

case (p = remove glob elem(l, sx))8
if (l(root(d)) = l) then d = NULL end-if9

case (p = change type glob/local elem(l, τN , sx)∧τN ∈CT)10
let tN be the structure of type τN11
for e ∈ getElems(getPaths(l, sx), d) do12

if (not validS(children(e), init(tN), tN)) then13
UPDATE d SET children(e) = adaptS([], init(tN), tN , INS)14

end-if15
case (p ∈ {change restrict, change base/item type, change type glob/local elem})16

let τN be the new simple type updating τO17
if (τO �� τN) then18

for e ∈ getElems(getPaths(τO , sx), d) s.t. content(e) �∈ [[τN]] do19
UPDATE d SET content(e) = defaultV al(τN)20

end-if21
case (p ∈ P◦)22

let tN be the new type structure updating tO23
if (tO ��ST tN) then24

for e ∈ getElems(getPaths(tO , sx), d)) do25
if (delElems(p)) then26

UPDATE d SET children(e) = adaptS(children(e), init(tN), tN , DEL)27
end-if28
if (addElems(p)) then29

UPDATE d SET children(e) = adaptS(children(e), init(tN), tN , INS)30
end-if31

end-if32
end-case33

return d34

case of insert or change of an operator, from the new operator. Table 3 reports when el-
ements should be inserted or removed. For change type local elem primitive neither
insertions nor removals are required, because this primitive does not alter a type struc-
ture but the content of subelements. Primitives insert operator and change operator
require to insert or remove elements depending on the new operator. If the new operator
is choice it means that operator sequence or all occurred before. Therefore, from
sequences of elements in the document grouped by the operator we need to choose
one of them. Thus, elements need to be removed. By contrast, if the old operator was
choice, it means that the new operator is sequence or all. Therefore, from an element
in the document bound by the operator, we need to insert other elements as specified
by the sequence or all operator. Thus, elements need to be inserted. For primitive
change cardinality both insertions and removals must be performed when both the
minimal and maximal cardinalities are updated. This is because a single invocation of
function adaptS can add elements or alternatively remove elements. Thus, we first need
to remove elements to adhere to the new maximal cardinality and then add elements to
adhere to the new minimal cardinality.

Example 5. Starting from the type structure in Fig. 4(a) the cardinality of b is changed
from (0, ∞) to (2, 4). This requires two applications of function adaptS. One for

XML Schema Evolution: Incremental Validation and Efficient Document Adaptation 103

sequence

c(0,1)b (0,) b (2,4)

sequence

c(0,1)

(a)

a

b

a

c b b

a

b bb b

a

b b

a

cb

a

bbb b

(b)

Fig. 4. Change of cardinality and its effects

Table 3. Output of addElems and delElems

primitive addElems delElems
insert local elem true false
insert ref elem true false
insert operator (opN = choice) false true
insert operator (others) true false
change type local elem false false
change cardinality see next table
change operator (opN = choice) false true
change operator (others) true false
remove operator false true
remove substructure false true
remove element false true

minN maxN addElems delElems
> < true true
≤ ≥ false false
> ≥ true false
≤ < false true

removing elements b exceeding the maximal cardinality and one for adding elements b
missing the minimal cardinality. The original and updated elements are in Fig. 4(b). ©

Once the effects of the evolution primitives have been propagated to the document
making it valid for the new schema, the document itself can be returned.

Proposition 2. Let sx be an XML Schema and d be an XML document valid for sx. Let
sxN be an XML Schema obtained from sx by applying p ∈ P . Then,

valid(adapt(p, d, sx), sxN) = true .

6 Experimental Evaluation

X-Evolution. X-Evolution [15] is a .NET system for handling collections of XML
documents and schemas. Documents and schemas are graphically represented as trees
and users can specify on the tree representation of a schema the evolution primitives
according to the kind of node (element tag, simple or complex type). The revalidate
algorithm is applied to check whether documents valid for the original schema are still
valid for the updated one. In case of invalidity, the user can then decide to adapt those
documents to the new schema (using the adapt algorithm) or to leave them without
schema. In the back end a DBMS handles documents, schemas and information of
which document is valid for which schema.

Experimental Results. Different experiments have been conducted to prove the effec-
tiveness and efficiency of our approach. We gathered from the Web different schemas
and corresponding valid documents. Among them the statistics on American baseball
competitions, the XML DBLP document (http : //dblp.uni− trier.de/xml/), and

104 G. Guerrini, M. Mesiti, and M.A. Sorrenti

Primitives on root element

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

≈ 265 B ≈ 1,3 KB ≈ 5 MB

tim
e

(s
)

Primitives on internal nodes

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

≈ 265 B ≈ 1,3 KB ≈ 5 MB

tim
e

(s
)

Primitives on leaves

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

≈ 265 B ≈ 1,3 KB ≈ 5 MB

tim
e

(s
)

(a) Shallow documents with different size

(b)

* Primitives

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

≈ 265 B ≈ 1,3 KB ≈ 5 MB

tim
e

(s
)

(c)

Fig. 5. Comparing the revalidate, MSXML validation and adapt algorithms

plays of Shakespeare collections (http : //www.ibiblio.org/xml/examples/). The
considered collections have been classified according to their size and the level of nest-
ing. Small documents are those with size less than 1 KB, average documents are those
with size between 1 KB and 1 MB, and big documents are those with size greater than
1 MB. Shallow documents are those with at most 5 levels of nesting, average depth
documents are those with 5 levels of nesting to 10, and deep documents are those with
more than 10 levels of nesting. The average characteristics of the documents in each
class are reported in the following table.

small average big
shallow 256 B 1.3 KB 5 MB

average depth 736 B 232 KB 137 MB
deep 640 B 924 KB 30 MB

On documents of each class we have applied different kinds of evolution primitives
that operate on the root of the document, on internal nodes, and on leaves. We con-
ducted many repetitions of the same evolution primitives and considered the average
execution times. Moreover, we also considered the execution time for primitives in P∗.
The revalidation algorithm has been compared with MSXML validation algorithm.

Fig. 5 reports the experimental results on Shallow documents. The three graphics in
Fig. 5(a) represent the execution time for evolution primitives applied on the root of
the document, on internal nodes, and on leaves. Fig. 5(c) reports the execution times
when only primitives in P∗ are used. Each single graphic reports the execution times of
revalidate, MSXML validation, and adapt algorithms applied on documents of small,
average, and big dimensions (relying on the legend in Fig. 5(b)).

Fig. 5(c) points out how our revalidation algorithm outperforms the MSXML vali-
dation algorithm for primitives in P∗. Indeed, documents are not accessed and validity
is checked only through the schema (in constant time). The performance of MSXML

XML Schema Evolution: Incremental Validation and Efficient Document Adaptation 105

0

0,5

1

1,5

2

2,5

0 < D ≤ 1 KB 1 KB < D ≤ 1 MB 1 MB < D ≤ 10 MB

tim
e

(s
)

* Primitives Insertion Update Deletion

(a)

0

0,5

1

1,5

2

2,5

0 < D ≤ 1 KB 1 KB < D ≤ 1 MB 1 MB < D ≤ 10 MB

tim
e

(s
)

* Primitives Insertion Update Deletion

(b)

Fig. 6. Execution times of evolution primitive for revalidation and adaptation

validation algorithm is mostly the same for documents with the same size and does not
depend on the level of nesting of documents. Our validation algorithm improves the
performances of an average of 20% for the other primitives for documents of big size
because it operates on small portions of the document. In the revalidate algorithm the
.NET facilities for accessing documents and evaluating XPath expressions have been
used. That means that exploiting indexing techniques available in the back end DBMS
the performance of our algorithm would further improve.

The execution time of the adapt and revalidate algorithms have been compared.
The insertion and deletion of internal nodes from the schema have a deeper impact in
adapting the structure of an element through function adaptS. The performance of the
adapt algorithm decreases when documents of big dimensions are handled, and specif-
ically when document leaves need to be updated, because the entire document should
be loaded in main memory and the probability of “page swapping” increases. This be-
havior can be however mitigated exploiting indexing techniques and standard DBMS
facilities as previously described for the revalidation algorithm. Moreover, the graphics
point out that updates of nodes deeply nested in the structure of a document require
more time that those closer to the document root. To further analyze the adapt and
revalidation algorithms we consider the two graphics in Fig. 6. They report the execu-
tion times in case of revalidation and adaptation for the evolution primitives that alter the
validity of documents (i.e., those for inserting, deleting, and updating elements/types in
the schema) and for primitives that do not alter the validity (i.e., those in P∗). For space
constraints, we only report the evaluations on documents of average nestings and prim-
itives applied randomly in the schema. Despite the best performances for primitives in
P∗ (as expected), we can note that the execution time for revalidation and adaptation
linearly increase as the size of documents increase. The update primitives are more ex-
pensive than the deletion primitives. These last ones have performances comparable to
those of primitives in P∗. A deeper analysis of primitives can be found in [13].

7 Conclusions and Future Work

In this paper we have proposed an approach for the incremental validation of XML
documents upon schema evolution. The approach takes advantage of knowing the doc-
uments valid for the original schema and the applied evolution primitive to establish

106 G. Guerrini, M. Mesiti, and M.A. Sorrenti

what needs to be checked in the documents, if some check is needed. An efficient adap-
tation algorithm to make the invalidated document portions conform to the evolved
schema is also proposed. Both the algorithms have been experimentally evaluated. The
validation algorithm has been demonstrated to improve the performance of the naı̈ve
solution. The adaptation process execution time linearly depends on the document size.

The work presented in this paper is being extended in several directions. For what
concerns the evolution primitives, primitives allowing to move a portion of the schema
and their impact on the revalidation and adaptation processes need to be investigated.
In [11] high-level primitives allowing to conveniently express common sequences of
atomic primitives have been proposed. The revalidation and adaptation algorithms are
currently being extended to these high-level primitives, and, more generally, to se-
quences of atomic primitives. Finally, the adaptation mechanism is being enhanced with
the possibility of specifying through a query the new contents of the adapted documents.

References

1. Balmin, A., et al.: Incremental Validation of XML Documents. TODS 29(4), 710–751 (2004)
2. Barbosa, D., et al.: Efficient Incremental Validation of XML Documents. ICDE (2004)
3. Barbosa, D., et al.: Efficient Incremental Validation of XML Documents After Composite

Updates. XSym (2006)
4. Bertino, E., et al.: Evolving a Set of DTDs according to a Dynamic Set of XML Documents.

In: EDBT Workshops (2002)
5. Bex, G.J., et al.: DTDs versus XML Schema: A Practical Study. WebDB , 79–84 (2004)
6. Bouchou, B., Ferrari, M.H.: Updates and Incremental Validation of XML Documents. DBPL,

216–232 (2003)
7. Bouchou, B., et al.: Schema Evolution for XML: A Consistency-preserving Approach.

MFCS, 876–888 (2004)
8. Bouchou, B., et al.: XML Document Correction: Incremental Approach Activated by Schema

Validation. IDEAS, 228–238 (2006)
9. Boobna, U., de Rougemont, M.: Correctors for XML Data. XSym , 97–111 (2004)

10. Choi, B.: What are Real DTDs Like? WebDB, 43–48 (2002)
11. Guerrini, G., et al.: Impact of XML Schema Evolution on Valid Documents. WIDM (2005)
12. Guerrini, G., et al.: XML Schema Evolution, TR Uni. di Genova (2006)
13. Guerrini, G., et al.: XML Schema Evolution: Incremental Validation and Efficient Document

Adaptation (extended version), TR Uni. di Genova (2007)
14. Kramer, D.K., Rundensteiner, E.A.: Xem: XML Evolution Management. RIDE-DM, 103–

110 (2001)
15. Mesiti, M., et al.: X-Evolution: A System for XML Schema Evolution and Document Adap-

tation. EDBT, 1143–1146 (2006)
16. Raghavachari, M., Shmueli, O.: Efficient Schema-Based Revalidation of XML. EDBT, 639–

657 (2004)
17. Srivastava, D.: Subsumption and Indexing in Constraint Query Languages with Linear Arith-

metic Constraints. Annals of Mathematics and Artificial Intelligence 8(3-4), 315–343 (1993)
18. Staworko, S., Chomicki, J.: Validity-Sensitive Querying of XML Databases. EDBT Work-

shops (2006)
19. W3C. XML Schema Part 1: Structures (2004) available at: http://www.w3.org

http://www.w3.org

Managing Branch Versioning in
Versioned/Temporal XML Documents�

Luis J. Arévalo Rosado, Antonio Polo Márquez, and Jorge Martínez Gil

University of Extremadura, Department of Computer Science
Avda. de la Universidad s/n 10071 Caceres (Spain)

{ljarevalo,polo,jmargil}@unex.es

Abstract. Due to the linear nature of time, XML timestamped solu-
tions for the management of XML versions have difficulty in supporting
non-lineal versioning. Following up on our previous work, which dealt
with a new technique for the management of non-lineal versions of XML
graph documents, called versionstamp, we have gone a step forward by
adding temporal information to each version included in the document.
Not only does it allow us to query the vDocuments on a temporal and
version level but also we can manage branch versioning in the temporal
axis. Moreover, to check its functionality, we have compared our tech-
nique to a timestamped XML solution and a set of Web services has
been developed. The easy management of multiple versioning, the large
number of queries in different XML standard query languages and its im-
plementation by using only XML technology, are some of the advantages
of the proposed technique.

1 Introduction

In this collaborative society information flows through all forms of computing,
however nobody looks at it in a static way because it changes throughout time
and its management becomes necessary to query past information, to retrieve
documents belonging to a specific version and to monitor the changes, etc. Doc-
ument management has been used for years in such environments like collabora-
tive software development, file share resources, etc and more recently, with the
appearance of XML [1], it has become necessary also to manage these documents.

Versions of an XML document can be managed through traditional procedures
like CVS [2] or subversion [3], the traditional adapted procedures based on XML
operations change (delta XML) [4,5] or integrate the different versions into a
single XML file using temporal [8,11,12,13,14] or version [9,15] technique. We
consider that whatever XML versioning system should have the following main
features: it should be able to, validate all XML versions of the document to
its schema (the first two solutions do not take into account this fact), support
branch versioning (temporal solutions do not do this) and, have the possibility to

� This work has been financed by Spanish CICYT projects “TIN2005-09098-C05-05”
and “TIN2005-25882-E”.

D. Barbosa et al. (Eds.): XSym 2007, LNCS 4704, pp. 107–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

108 L.J.A. Rosado, A.P. Márquez, and J.M. Gil

query the XML versioned documents using some XML standard query languages
such as XQuery and XPath (the first solution does not do this).

To get these characteristics, we have used the technique shown in [9] that con-
sists of marking the document with a versionstamp instead of using a timestamp.
In this work we have gone even further by adding temporal information to each
version allowing us to query the document either on temporal or/and version
level. We have also defined the basic updated operations common to whatever
XML document, describing them by means of an XML document called XML
transactional document which allows us to manage changes for any markup lan-
guage based on the XML specification. Moreover, to check its functionality, we
have compared our technique to a timestamped XML solution as well as devel-
oping a set of Web Services.

The remainder of this paper is organized as follows: we begin by summarizing
the current solutions for the management of XML versions. Then, we continue
showing the foundations of this paper based on [9], extending it with temporal
information and describing later the basic updated operations. We then follow
up this by showing several queries made on a temporal and version level. After
that, some implementation details and the achieved results are discussed and
finally, we offer our conclusions and a look at our future work.

2 State-of-the-Art

The problem of XML document version management combines the issues of doc-
ument version management [4,5,6,7] and temporal databases [22]. Document ver-
sion management has been used for years mainly in collaborative environments.
These traditional techniques [2,3] are based on diff lined-based algorithms to lo-
cate the differences between two versions of a text. For XML documents, where
the organization in lines can be neglected, line-based approaches are inappropri-
ate since the structure of the document is lost. The necessity to manage XML
versions not only is important in XML databases but also in XML document
management because nowadays more and more applications use it to store their
configurations, data, etc, such as OpenOffice and Microsoft Office.

XML solutions have been centered mainly in some of the following ideas.
Delta XML management is based on traditional change operation procedures
adapted to XML [4,5]. It consists of obtaining and storing the XML differences
between two versions (delta XML). An exhaustive study of XML diff approaches
is made in [10] where the authors use an C++ implementation of [4] to manage
XML OpenOffice document versions. However delta XML solutions have the
same problems than traditional techniques, it means, neither XML validation
nor XML query cannot be carried out in these solutions.

Multiversion XML [6,7] define an indexing technique for branched version-
ing which they called BT-Tree and BT-ElementList respectively, however they
cannot be used in XML Standard Query languages (XQuery or XPath[2]).

Temporal XML Representation based on temporal database topics [21] rep-
resenting and managing historical information in XML. In [11] a technique for

Managing Branch Versioning in Versioned/Temporal XML Documents 109

managing temporal web documents is shown using an XML/XSLT infrastruc-
ture. A data model is proposed for temporal XML documents [14] where leaf data
nodes can have alternative values; however supporting different structures for
non-leaf nodes is not discussed. Extensions of XPath data model are exposed in
[13,12] to represent and query transactional and valid time respectively, by means
of the addition of several temporal dimensions. A temporally-grouped data model
is shown in [8] that gives us a way to represent the content database evolution
using XML timestamps, however non-lineal versioning is not supported.

The integration of time and version concepts to manage dynamic information
has been studied recently in [15,16] for XML and object-oriented databases re-
spectively. In [15] the authors defined temporal delta (tDelta) and introduces
version time in it, however query support is not discussed.

Due to the linear nature of time, XML timestamped solutions for the man-
agement of XML versions have difficulty in supporting non-lineal versioning. In
collaborative scenario, due to the fact that users can update any version of the
document generating a new version either from the current one or discard it and
reuse an old version, branched versioning is necessary. Using our solution, called
as versionstamp or vstamp [9], this feature can be modeled in a easy way.

3 XML Versioned Documents

In this section we present how to manage changes in XML document in a branch
way. Firstly the foundations our work is based on [9] is shown. Then we extend
it to incorporate temporal information and finally we describe a taxonomy of
changes for XML documents.

3.1 Versionstamp Technique

An XML versioned graph data model, called as V-XML data model, was shown
in [9] to represent versions in XML graph documents by means of adding ver-
sionstamp information in the graph document obtaining a new XML document
which we called as vXML Document or vDocument. This is formed by two sec-
tions: The first one which stores all information about the included versions
and the relationship between them and the second one being, each element in
the document is transformed into a versioned element by means of defining its
version validity, that is, for which version/s of the document it is valid.

In order to store the included versions, we decided to map by means of an
XML document, which we called as version_tree, how the versions have been
made over time. Each included version is an element and represents the differ-
ent snapshots of the document. If there is an parent-child relationship from Vi
element to Vj element, it means that, Vj is created by updating Vi.

Once the included versions have been represented, it is necessary for each
versioned element to represent its version validity. To do it, we use a versionstamp
technique, which we called as Version Region [9], that is defined as a set of version
identifiers from the version tree indicating for which versions of the tree it is valid

110 L.J.A. Rosado, A.P. Márquez, and J.M. Gil

Fig. 1. XML and graphical representation of a version tree with temporal information

Fig. 2. Versioned elements with version region

(a sub-tree of the version tree). A version region is a [start-End] pair where the
start value is a version identifier that represents the origin node of the valid area
in the version tree and End is a set of version identifiers that indicate when
each area has stopped being valid. In this way each element in the versioned
document is formed by a version region that is converted into two attributes,
v:start and v:end. The first one is defined as an IDREF datatype attribute which
refers to a version identifier from the version tree and the second one defined as
IDREFS datatype which allows us to represent a set of version identifiers from
the version tree.

Managing Branch Versioning in Versioned/Temporal XML Documents 111

In figure 1 and 2 a vDocument is shown. On the one hand in figure 1 the version
tree with several versions of an XML document is shown: i.e: from the version
identified by V2 several changes have been made (identified by V3, V5, V6). On
the other hand in figure 2 several versioned elements are shown. i.e: the first au-
thor element is valid from V1 and stops being valid in V9, this means that it is
valid for all descendants-self of the V1 version except all V9 descendant-self ver-
sions. Another example is the first v:data child for author element which is valid
from [V1, {V3,V10}] so it is valid in the versions identified by V1,V2,V5,V7,V6
and V8 since all descendant-self of V3 and V10 are not included meanwhile the
second v:data of this author is only valid for all descendants versions of V3
except descendants-self of V9. The special value "now" in the attribute v:end
indicates "no changes until now", in other words, the version region is formed
by all version descendants from the v:start attribute. Obviously, we have to take
into account that an element cannot exist without its ancestor elements.

3.2 Temporal Time in vDocuments

When a new version of the document is generated in a vDocument, these changes
happen at some point in time. Until now, we have only represented the relation-
ship between the versions in vDocuments without taking into account when these
changes occurred, this means that, the temporal validity information associated
to each version is lost. In this section we show how to integrate the valid-time
axis in a vDocument calling as VTstamp.

Temporal database researchers have focused on three principal dimensions of
time [22]: valid time, transactional time and user-defined time. In this work,
we have decided to model the valid-time axis, although the other axes can be
managed in the same way. The valid time of a fact is defined [22] as the time
when the fact is true in the modeled reality, in our case, the valid time of a
version is when the version is true. We have decided to include the valid time
by means of a time interval, a pair of two time instants [t1,t2] that is turned
into two attributes for each version defined in the document as shown in figure
1. The following restrictions must be carried out: 1) For each version defined in
the version tree, the value of t1 instant must always be less than t2 2) Any two
time intervals from the version tree cannot overlap and 3) We assume that time
is bounded.

On the other hand it is also necessary to define the valid time for each tag
included in the document, that is when this tag is valid. Using the version region
used in our technique, we can define its temporal validity easily. Due to the fact
that a specific tag is valid in a set of versions from the version tree, this means
that, this tag will also be valid in each period of time for each valid version. For
example in figure 2 the temporal validity of a specific v:data tag which is valid
in the following version: [V1, {V3,V10}] is shown, therefore it will be valid in the
following time intervals {[01-01,01-05], [01-06,01-08], [01-21,01-23], [01-24,02-05],
[02-10,02-14], [02-15,02-25]} (shown with a thick line above in the figure). Notice
that some of these time intervals can be joined forming a continuous period of

112 L.J.A. Rosado, A.P. Márquez, and J.M. Gil

time (coalesce) i.e: [02-10,02-25], however, this is not advisable since they are
placed in different branches from the version tree.

3.3 Changing and Updating a VXML Document

As has been said, XML documents are not static, so it is necessary to manage
inserts, deletes or updates that can modify them [20]. Beginning at the initial
state of the document (version 0), new versions are then established by applying
a number of changes to whatever version defined in the document. Once we know
how to represent versions in XML documents, the following questions will be:
what kind of change operations can generate a new version? And, how to update
the XML versioned document from a change operation?.

In order to answer the first question, we have analyzed which items can be
changed in an XML document and which operations can be performed on them.
However, before this, it is necessary to identify thoroughly those elements which
have been changed from the current version. Among the different possibilities
shown in [4], we have decided to add an attribute idf to each element in the docu-
ment in order to identify it in a vDocument, with the exception of v:data, v:attrib
and v:isref because those elements are identified by its parent element. Thus, the
basic structural XML operations, common in whatever document based on the
XML specification, are shown in table 1.

Although move operation can be represented as a delete and an insert operation
we have decided to include it as one of our basic operation since it is a very frequent
change in XML documents. According to the consistency principle, to accept the
execution of each primitive a restriction must be satisfied, that is, the document
obtained must be well-formed, and each version of the document must be valid in
accordance to the specifications of its XML-Schema. To guarantee this, a whole set

Table 1. XML changes primitives

Managing Branch Versioning in Versioned/Temporal XML Documents 113

of pre-conditions to be fulfilled have been defined for each single operation before
producing a new version of the document. For example: 1) the “idf” parameter for
all operations must exist for the version we want to update, 2) the name of the at-
tribute in IA operation implies that another attribute for this element cannot exist
from the current version (there cannot be two attributes with the same name) and
3) the DC operation cannot be carried out if there isn’t any PCDATA information
for the required identifier.

These basic updated operations can be obtained mainly by means of two
techniques. On the one hand, obtaining the XML operational differences be-
tween two versions by means of several approaches such as [4,18,19] or on the
other hand from a certain version specifying which changes we want to carry out.
The technique proposed in this work is based on both solutions, needing, there-
fore, a mechanism to integrate them. This consists of representing each update
operation exposed previously in an XML format.

In this way if an approach based on differences is chosen, then an XSLT
stylesheet, which transforms this XML document with differences to our XML
representation, is defined. From [10], where several XML diff approaches are
analyzed, we have decided to choose JXydiff [25] which is a Java tool for detecting
changes in XML documents based on Cobena’s work shown in [4]. We chose this
for the following reasons: 1) It has the main features to retrieve XML differences:
can manage all kind of XML nodes, can detect move and update operations and
is based on a tree oriented algorithm, 2) It is written in Java, so its integration
in our implementation is immediate and 3) It is very easy to export its output
XML differences to our XML representation by means of an XSLT stylesheet. As
a future work, our idea is to use a relational-based approach [17] for detecting
changes in XML documents due to scalability problem that suffers the main-
memory Diff algorithms mainly in Java. On the other hand, if we decide to
change the document manually, the change editor has only to generate a batch
document with update operations in our XML representation.

In this way, the creation of a new version is defined by a set of the afore-
mentioned operations represented in an XML document with changes, which
we call an XML transaction document, as is with the concept of transaction in
databases, the vDocument is updated if and only if all changes are executed.
This transaction is carried out in the following three phases:

Phase 1) Retrieval of the version to modify. The document to work on will
be the version of the XML document obtained from the vDocument, to which
the XML change transaction will be applied.

Phase 2) Modification of the retrieved XML document.
Phase 3) Updating of the versioned document. a). Obtain the XML trans-

action document b). Execute each operation from this XML to the vDocument
and c). The new version and its associated temporal information is added to the
version tree.

In figure 3 the XML transaction schema is shown as well as a practical ex-
ample. As we can see, an XML transaction document may be formed by several
versions where each version may be formed either by a sole operation or by

114 L.J.A. Rosado, A.P. Márquez, and J.M. Gil

Fig. 3. Schema and an example of an XML transactional document

means of several of them (the parameters of each operation from table 1 are
defined as attributes). For example, the first DA operation shown in figure 3
is formed by two attributes: idf that stores the parent identifier (d1eE4) and
name (articleCode) that is the name attribute to delete. Another example is the
IE operation, InsertElement, that can be formed by one or several IE/IA/IC
operations as is shown in the same figure. In that case, the first IE operation
inserts an element which has a child element which contains an attribute (IA)
and a PCDATA content (IC).

Related to the second question about how to update a VXML document when
a basic change operation is produced the following actions are carried out. When
an insert operation is made, the new element/attribute/content is inserted in its
position setting the v:start attribute to the new identifier version and the v:end
attribute to ”now” value. In the case of a delete operation, it is only necessary to
change the v:end attribute of all affected items setting them to the new identifier
version. For update operations the v:end attribute for the current item is set to
the new identifier version and the new element/attribute/content is added and
its version region attribute is set as in the insert operation. In the case of a move
operation, the affected items are modified as in the update operation.

One of the most important advantages of using an XML document to define
the update operations, is that it allows us to manage changes for any markup
language based on the XML specification, since these update operations are
common to all of them. Thus, to specify the changes of a certain XML language,
it would be only necessary to define it by means of these primitives. In this way,
as a future work we will use this technique to manage versions of XSLT and SVG
document. Moreover, this technique can be also used to represent the version
history of an XML schema document.

Managing Branch Versioning in Versioned/Temporal XML Documents 115

4 Retrieval in vDocuments

One of the main advantages of this proposal is the wide set of queries we can
specify both using version and temporal axis. In this way, classical temporal XML
queries can be made such as temporal projection, snapshot, etc and also version
queries such as version projection, snapshot version, etc. Here, we will show some
of them that are used in the following section to measure our technique.

Q1: Version snapshot query
In order to retrieve the valid labels for a given version it will be necessary to

analyze which versions are included in a version region and check if the requested
version belongs to them. This occurs only if 1) the given version is among the
descendants in the "start" version identifier in the version tree or even is itself
and 2) the given version is not among the descendants or is itself in all version
identifiers for "end" attribute. To do this effectively, we have to obtain which
versions are in a version region and check if they contain the requested version.
We use the id() function provided by XPath to obtain the versions by means
of dereference the version/s in the version tree which v:start and v:End refer to
(they are defined as IDRef and IDRefs datatypes respectively) and thereby we
can easily obtain their descendants and check the constraints said before.

We have defined a version operator called Vmeets as a user-defined function
(line 1) that check (line 4) if the given version belongs only to the v:start at-
tribute (line 2) and not to the v:End attribute (line 3). That query retrieves all
nodes valid for V8 version (line 6). In the same way, other version operators are
able to been defined as: Vancestors, Vparent, Vcontains, etc.

1. declare function f:Vmeets($p,$v) as xs:boolean{
2. let $start:=$p/id($p/@v:start)/descendant-or-self::version/@xml:id
3. let $end:=$p/id($p/@v:end)/descendant-or-self::version/@xml:id
4. return (($start=$v) and (not($end=$v))) };
5. <data>{
6. for $s in //versioned_doc//*[f:Vmeets(.,’V8’)]
7. return $s
8. }</data>

Q2: Count the number of the title element valid for version V8 using Xpath
Using the id() function, we can query the vDocument using another XML stan-
dard query language such as XPath. In the following query all title elements
valid for version V8 are counted.

count (//*title[not(id(./@v:end)/descendant-or-self::version/@xml:id=’V8’) and
(id(./@v:start)/descendant-or-self::version/@xml:id=’V8’)]

Q3: Temporal snapshot query
Since temporal information has been added to our vDocuments, we can re-

trieve it by means of the valid-time axis. To do this, it is necessary to find out in
which version the given time belongs to. If a time instant is given, a user-defined

116 L.J.A. Rosado, A.P. Márquez, and J.M. Gil

function called tmeets (line 1) retrieves which version contains this time. After
that, the previous version snapshot is executed (line 5, 6). In the case of a time
interval, a user-defined function called tContain is defined which verifies which
version contains the requested time interval. Q1 query using the valid-time axis
is shown below.

1. declare function f:tmeets($time) as xs:string{
2. let $id:= //version[(./@tvstart<=$time) and (./@tvend>=$time)]/@xml:id
3. return $id };
4. <data>{
5. let $version:=f:tmeets("2007-02-20") //This instant belongs to V8
6. for $s in //versioned_doc//*[f:Vmeets(.,$version)]
7. return $s
8. }</data>

5 Experimentation and Implementation

In this section several experiments have been carried out in order to compare our
technique to a timestamp XML approach and some details of its implementation
are also shown.

5.1 Experimental

The testing machine is a Pentium Mobile 1,8GHz PC with Linux (Ubuntu), with
1024MB memory and a 120GB IDE hard drive. The data shown in the graphics
are the performance average on 3 identical tests. We have developed a Java
application to generate a large amount of version data where the operations from
the table 1 are selected at random, assigning a higher probability to the insertion
of elements. Once selected a primitive, the current version and the affected node
are selected at random too. The tests have been carried out on cases of lineal
versioning and branch versioning. In the latter case, we have selected at random
the version we want to update according to the following probabilities a 20%,
50% and 80% possibility of choosing a different version from the current one.

The experiments were carried out on 5, 10 and 20 changes per version, for 100,
60 and 30 versions respectively thereby evaluating the behavior of our system in
the following cases: a large number of versions with few changes (100 versions
- 5 changes), a medium number of versions with some changes (60-10) and a
small number of versions with many changes (30-20). In the experiment, we
selected the ACM XML Sigmod Record supplied in [26] (November of 2002)
where three different versions of this document were used: small, medium and
large. All characteristics of these documents can be consulted in figure 4.

We have also developed a temporal timestamped XML solution (tstamp) in
order to compare it with ours. In this way, we have chosen the technique shown
in [8], based on adding a time interval to each label in the document, allowing the
incorporation of temporal information in the XML document. All our versioned
lineal XML documents have been converted to temporal ones. The resulting

Managing Branch Versioning in Versioned/Temporal XML Documents 117

Fig. 4. a. Characteristics of the document. b. Resulting vDocument size.

version size document is shown in figure 4b where it can be seen that the size of
our vDocuments are a bit higher than the timestamped solution.

The retrieval time obtained refers to the transformation time in a client ap-
plication, regardless of the document loading time in memory or transmission
where the retrieval time has been calculated on 3 performances. To do it, we have
used the Saxon processor [27] where the following queries have been carried out:

∗ Q1: Version/Temporal Snapshot query using XSLT.
∗ Q2: Find the total number of title elements valid for a version in XPath.
∗ Q3: Retrieve those authors and their descendants valid for a version in

Xquery.
∗ Q4: Snapshot query using an optimized XSLT.

In figure 5.a the retrieval time (measured in ms) obtained using an XSLT
stylesheet is shown (query Q1). This figure shows the retrieval time using the
timestamped solution (Tstamp), using the versionstamp solution (VStamp) and
the versionstamp solution on a temporal level (VTstamp). As we can see, our
solution here behaves less efficiently than the timestamp solution, since the time
solution uses the operators <= and >= to verify if a time belongs to a time
interval, meanwhile in our process we have to retrieve all descendant identifiers
for the v:start and v:end attributes. In this way, both Vstamp and VTStamp
greatly depend on the number of versions that the document has as well as the
size of it. In some cases (short documents or documents with few changes) our
performance is quite similar to the timestamped solution, however our solution
in lineal versioning performance is poorer. This can be seen in figure 5.b and
figure 6.a where the retrieval time for Q2 and Q3 query are shown.

To avoid this situation, we have developed an optimized solution that con-
sist of storing within each version their descendants allowing us not to have to
constantly recover this information in each query. Therefore, each version in the
version tree will have a new attribute called descen that stores its descendants.
In this way if we want to check if a requested version belongs to a version re-
gion, it is only necessary to verify if the descen attribute for the v:start version

118 L.J.A. Rosado, A.P. Márquez, and J.M. Gil

Fig. 5. Retrieval time a. Q1 query b. Q2 query

Fig. 6. Retrieval time a. Q3 query. Q4 query.

contains the given version and it is not present in the v:end attribute. We can
see this improvement in figure 6 where we can verify that using it the retrieval
time is reduced considerably and in some cases the retrieval time is quite close
to the timestamped solution. In those cases that our solution had its poorest
performance (large documents or several versions) this time has been reduced
by up to 50%. Notice that, this solution is almost independent from the number
of versions, since it is not necessary to retrieve the descendants of the v:start
and v:end attribute.

Although it can be argued that our solution performs poorly in large doc-
uments, it offers many advantages that timestamped solutions cannot: we can
query versioned documents both on a version and a temporal level, manage
branch versioning that is not supported in timestamped solutions and extend
the number of temporal/version queries that can be made.

Managing Branch Versioning in Versioned/Temporal XML Documents 119

5.2 Implementation

The system has completely developed using XML technology. To execute it we
just need an XSL stylesheets, Xquery or XPath processor with support for id()
XPath function (tested in Exist, Saxon and Xsltproc processor). To check its
functionality, we have developed a set of Web Services to manage versions of
XML documents. Our proposal is to develop a generic engine to store, manage
and query the different versions from an XML document through Internet thanks
to Web Services without to set any additional software. The most important
advantages of this engine is the possibility to offer them to third-party clients
to either version their data or to develop a more complex versioning system by
means of invoking our Web Services.

Table 2. Versioning Web Services

Group Web Service Brief description

Conversion doc2vdoc Generates an XML versioned document from an
XML document.

Conversion vdoc2doc Retrieves the reconstructed XML document from
a specific version

Get getDocs/VDocs
Retrieves a list of documents/versioned

documents stored in the system for a specific
user.

Get getVersions Retrieves the available versions for a vDocument

Get getInfo Gives information about each update operation
(parameter, error, etc)

Query getQuery Executes XPath or XQuery in a vDocument.

Changes Primitive Used to run an update operation for a specific
vDocument

Changes execTrans Executes an XML transaction document
Changes exec_Randontrans Executes an XML random transaction document

Manage uploadXML/ VXML Allows us to upload XML/VXML to the
repository

Manage deleteXML/ VXML Allows us to delete a XML/versioned document
from the repository

Diff. GetDiff Obtains the differences between two versions

Diff. getXMLDiff Retrieves a specific version of the document from
the Vdocument.

Our Services have been developed using Java, more specifically the API called
AXIS [24] from the Apache Software Foundation. AXIS has proven itself to be a
reliable and stable base on which to implement Java Web services. Initially, we
propose a set of 16 Web Services that can be classified in six groups as shown in
table 2 (parameters of each service is omitted in this work due to lack space). In
order to carry out some trials on these services we developed a client prototype
too as it is shown in the following URL: http://exis.unex.es/versionado/.

120 L.J.A. Rosado, A.P. Márquez, and J.M. Gil

6 Conclusions and Future Work

Document version management has been used for years mainly in collaborative
environments by means of, on the one hand, diff lined-based approaches or delta
XML, however these solutions are not recommended in XML documents since
they can neither validate nor query the XML versioned document and, on the
other hand, XML temporal document solutions, based on the timestamped tech-
nique, which have difficulty in supporting non-lineal versioning. To solve these
problems we proposed a versionstamp technique in [9].

In this paper, we have extended it by means of adding temporal informa-
tion to each version included in the vDocuments. Not only does it allow us to
query the vDocuments on a temporal and version level but also we can manage
branch versioning in temporal documents. Moreover we have also defined the ba-
sic updated operations common to whatever XML document, describing them by
means of an XML document called XML transactional document which allows
us to manage changes for any markup language based on the XML specification.

Finally we have compared our solution to a timestamped XML one. Although
it performs poorly in some cases we have improved it by means of an optimized
solution thereby offering us many advantages that timestamped solutions cannot
achieve. Moreover, we have developed a set of Web services which do not have
portability restrictions and allows us not only to manage the different versions of
an XML document but also to validate, transform, store and query them in an
easy way. Since our proposal is open, it can be used for third-party clients either
to manage their documents or to extend them by incorporating new features.

As future work we propose these following steps:

∗ To analyze new queries in XML versioned documents as range queries, tem-
poral/version queries, temporal overlapping queries, etc.

∗ Compare the results storing the documents in native XML databases and in
relational databases.

∗ To define the version region by means of a set of sub-graph nodes allowing
us to represent element temporal interval.

∗ To implement a versioning system based on XUpdate.
∗ To extend these services by incorporating some features of traditional version

control systems such as security, lock files, indexing the document to run the
queries faster, etc.

∗ To apply our versionstamp technique to other XML markup languages such
as XSLT stylesheets, SVG graphics or even to XML office documents as
OpenOffice or Microsoft Office.

References

1. W3C, http://www.w3c.org
2. CVS. Concurrent Versions System, http://www.cvshome.org
3. Subversion, http://subversion.tigris.org/

http://www.w3c.org
http://www.cvshome.org
http://subversion.tigris.org/

Managing Branch Versioning in Versioned/Temporal XML Documents 121

4. Cobena, G., Abiteboul, S., Marian, A.: Detecting changes in XML documents. In:
Proceeding of the 18th International Conference on Data Engineering (2002)

5. Chien, S-Y., Tsotras, V.J., Zaniolo, C.: Efficient management of multiversion doc-
uments by object referencing. VLDB (2001)

6. Vagena, Z., Moro, M.M., Vassilis J.: Tsotras. Supporting Branched Versions on
XML Documents. In: RIDE (2004)

7. Salzberg, B., Jiang, L., Lomet, D.B., Barrena, M., Shan, J., Kanoulas, E.: A Frame-
work for Access Methods for Versioned Data. In: Bertino, E., Christodoulakis, S.,
Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.)
EDBT 2004. LNCS, vol. 2992, Springer, Heidelberg (2004)

8. Wang, F., Zaniolo, C.: XBiT: An XML-based Bitemporal Data Model. In: Atzeni,
P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp.
810–824. Springer, Heidelberg (2004)

9. Rosado, L.A., Márquez, A.P., González, J.M.F.: Representing versions in XML
documents using versionstamp. ECDM (2006)

10. Ronnau, S., Scheffczyk, J., Borghoff, U.M.: Towards XML Version Control of Office
Document. In: Proceedings of ACM DocEng. (2005)

11. Grandi, F., Mandreoli, F.: The valid web: An XML/XSL infrastructure for tempo-
ral management of web documents. In: ADVIS (2000)

12. Dyreson, C.E.: Observing transaction-time semantics with TTXPath. In: WISE
(2001)

13. Zhang, S., Dyreson, C.E.: Adding valid time to XPath. In: Bhalla, S. (ed.) DNIS
2002. LNCS, vol. 2544, pp. 29–42. Springer, Heidelberg (2002)

14. Amagasa, T., Yoshikawa, M., Uemura, S.: A data model for temporal XML docu-
ments. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873,
Springer, Heidelberg (2000)

15. Wuwongse, V., Yoshikawa, M., Amagasa, T.: Temporal Versioning of XML Docu-
ments. In: Chen, Z., Chen, H., Miao, Q., Fu, Y., Fox, E., Lim, E.-p. (eds.) ICADL
2004. LNCS, vol. 3334, Springer, Heidelberg (2004)

16. Galante, R.M., Santos, C.S., Edelweiss, N., Moreira, A.S.: Temporal and Versioning
Model for Schema Evolution in Object-Oriented Databases. In: Transactions on
Data and Knowledge Engineering (2005)

17. Leonardi, E., Bhowmick, S.S., Madria, S.K.: Xandy: Detecting Changes on Large
Unordered XML Documents Using Relational Databases. In: Zhou, L.-z., Ooi, B.-
C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, Springer, Heidelberg (2005)

18. Mouat, A.: XML diff and patch utilities. Master’s thesis, Heriot-Watt University,
Edinburgh, Scotland (2002)

19. Wang, Y., DeWitt, D.J., Cai, J.: X-Diff: An effective change detection algorithm
for XML-documents. In: Conf. on Data Engineering, IEEE CS Press, India (2003)

20. Xquery Update. http://www.w3.org/TR/xqupdate/
21. Snodgrass, R.T.: The TSQL2 Temporal Query Language. Kluwer Academic Pub-

lishers, Dordrecht (1995)
22. Jensen, C.S., Dyreson, C.E., et al. (eds.): The Consensus Glossary of Temporal

Database Concepts (February 1998)
23. Tatarinov, I., Ives, Z.G., Halevy, A.Y., Weld, D.S.: Updating XML. In: ACM Sig-

mod. (2001)
24. Apache AXIS. Retrieved From: http://ws.apache.org/axis/
25. JXydiff. http://potiron.loria.fr/projects/jxydiff
26. ACM XML Sigmod Record. http://www.sigmod.org/record/xml
27. Saxon. http://www.saxonica.com

http://www.w3.org/TR/xqupdate/
http://ws.apache.org/axis/
http://potiron.loria.fr/projects/jxydiff
http://www.sigmod.org/record/xml
http://www.saxonica.com

SXDGL: Snapshot Based Concurrency Control

Protocol for XML Data�

Peter Pleshachkov1 and Sergei Kuznetcov2

1 Institute for System Programming RAS, Russia
peter@ispras.ru

2 Institute for System Programming RAS, Russia
kuzloc@ispras.ru

Abstract. Nowadays, concurrency control for XML data is a big re-
search problem. There are a number of researchers working on this prob-
lem, but most of the proposed methods are based on the two-phase
locking protocol, which potentially leads to a high blocking rates in
data-intensive XML-applications. In this paper we present and evaluate
SXDGL, a new snapshot based concurrency control protocol for XML
data. SXDGL completely eliminates data contention between read-only
and update transactions. Moreover, SXDGL takes into account the hier-
archical structure and semantics of XML data model determining con-
flicts between concurrent XML-operations of update transactions. The
conducted evaluation shows significant benefits of SXDGL for processing
concurrent transactions in data-intensive XML-applications.

1 Introduction

Over the last decade, native XML database management systems has received
considerable attention from the research community and industrial software
companies. As a result, there are a number of databases now on the market,
which support XML data model. One of the key requirements for a native XML
database is it’s ability to provide data consistency while allowing multiple trans-
actions to have concurrent read/write access to the XML documents. In order to
meet this requirement database researchers adopted an existing multigranularity
locking scheme based on 2PL protocol for XML data [10,6,17].

It is a well known fact [20] that 2PL does not efficiently support concurrent
processing of complex read-only transactions (usually called queries) and update
transactions (usually called updaters), causing update transactions to suffer from
long delays due to data contention with read-only transactions. The problem
seems to be increasingly important in the context of XML applications, because
XQuery (with small extensions like XQueryP[2]) is used as a native language
for development of XML-applications, and, as a result, transactions written in
XQuery may be long-lived. Thus, delays for short updaters may be unacceptable.

This problem has been extensively studied by many researchers in the past
years and various multiversion extensions to 2PL protocol (e.g. 2V2PL, MV2PL,
� This work was partially supported by the grant of RBRF N 05-07-90204.

D. Barbosa et al. (Eds.): XSym 2007, LNCS 4704, pp. 122–136, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

SXDGL: Snapshot Based Concurrency Control Protocol for XML Data 123

ROMV) have been proposed in the literature [21]. Moreover, multiversion pro-
tocols have been widely accepted in the industry and implemented in many
relational databases like Oracle, MS SQL Server 2005, PostgreSQL, etc. How-
ever, multiversion concurrency control for XML data has received little attention
in the literature so far. The problem is challenging due to a number of reasons
specific to XML data.

Firstly, it is not straightforward how to design a versioning scheme for XML
database in a such way that the effectiveness of XML-document traversal oper-
ations would be preserved. It is a very important issue, because traversal oper-
ations are intensively performed during query/update execution, and therefore,
of crucial importance to achieve high performance. Indeed, each time when we
want to access a node by pointer we should perform pointer dereferencing and
additionally follow the version chain in reverse chronological order to locate the
appropriate version. Thus, the versioning scheme should be designed in a such
way that additional overhead incurred by choosing an appropriate version would
be minimized.

Secondly, to eliminate unnecessary conflicts between updaters we need to take
into consideration hierarchical structure of XML data model and semantics of
XQuery/XUpdate operations. Especially, we need carefully consider all differ-
ent types of XML update operations and regular path expressions taking into
account different conflict behavior.

Thirdly, we should reduce the locking overhead (in updaters), which can be
tremendous for XML data as shown in [10].

As our main contribution we propose SXDGL, a new snapshot-based XML
DataGuide locking protocol, which produces only serializable schedules and
supports efficient processing of concurrent processing of transactions in XML
database. Our protocol enables efficient processing by employing the following
techniques. Firstly, SXDGL allows queries to execute without acquiring locks.
It completely eliminates locking overhead for queries and interferences between
queries and updaters. Secondly, multiversioning is implemented using adjusted
memory-mapped architecture, which significantly reduces a total number of tra-
verses of version chain to locate the appropriate version. Besides, the proposed
versioning scheme restricts the maximum number of versions of data item to
four. So, it significantly simplifies version management. Finally, we introduce a
DataGuide-based locking scheme for isolating updaters. 11 types of new lock
modes are introduced, which allow to capture the different conflict behavior of
XQuery/XUpdate operations, and, as a consequence, avoid unnecessary delays.
Besides, using a compact DataGuide structure for locking purposes guarantees
that the locking overhead is low as opposed to approaches that set locks on the
nodes of XML-document.

The SXDGL protocol have been prototyped in Sedna XML database system
[13], which is successfully used in the content engineering projects, biological and
Web-based applications, etc. In this paper, we present the results of some exper-
iments which have been conducted with the aim of evaluating the performance

124 P. Pleshachkov and S. Kuznetcov

of SXDGL protocol. The experiments show significant benefits of SXDGL for
processing concurrent transactions in XML database.

The paper is organized as follows. In Ssection 2 we introduce the XML query
and update languages, we refer throughout the paper. Section 3 outlines basic
principles of data organization, memory management and versioning scheme in
Sedna XML database. Section 4 presents SXDGL protocol. The results of per-
formance evaluation of our protocol are discussed in Section 5. Finally, sections
6 and 7 discuss the related work and conclude the paper.

2 XML Query and Update Languages

In Sedna we use XQuery to query XML documents. To update XML documents
we use our own primitive update operations like insert, delete and rename that
are familiar with W3C XUpdate [3]. It is clear, that any complex update opera-
tion may be expressed via these operations. We consider three kinds of insert op-
erations. The operations InsertInto(path, constr), InsertAfter(path, constr) and
InsertBefore(path, constr) insert new node defined by constr as the last child,
following sibling and preceding sibling respectively for each target node defined
by path. Here path is an XPath operation (all axes are supported) used both in
XQuery queries and update operations. The operation Delete(path) removes the
target subtrees defined by path. The operation Rename(path, QName) assigns
new name defined by QName to the target nodes defined by path. We denote
the intermediate nodes and destination nodes of path as Itm and Dst respec-
tively. Below in this paper, we use II, IA, IB, RN, D and P to denote InsertInto,
InsertAfter, InsertBefore, Rename, Delete and path operations respectively.

3 Storage System

In this section we present Sedna XML storage system. Specifically, we focus on ba-
sic principles of data organization, versioning scheme and memory management.

3.1 Data Organization

The overall principles of data organization are illustrated in Fig. 1 (b). The
central component is the DataGuide, which is presented as a tree of nodes. A
DataGuide [8] is a compact structural summary of XML tree. A DataGuide
describes every unique label path of a document exactly once, regardless of the
number of times it appears in that document, and encodes no label path that
does not appear in that document.

Each DataGuide node is labeled with an XML node kind name (e.g. element,
attribute, text, etc.) and has a pointer to data pages where nodes corresponding
to the DataGuide node are stored. Some DataGuide nodes depending on their
node kinds are also labeled with names. Data pages belonging to one DataGuide
node are linked via pointers into a bidirectional list.

SXDGL: Snapshot Based Concurrency Control Protocol for XML Data 125

doc

person

@age name addr
child

hobby

person

name addr hobby

n1

n2

n3 n4 n5 n6 n7

n8

n10 n11 n12

<doc>
<person age = '55'>
 <name>Peter</name>
 <addr>Old Street, 25</addr>
 <child>
 <person>
 <name>John</name>
 <addr>UStreet, 16</addr>
 <hobby>swimming</hobby>
 <hobby>cycling</hobby>
 </person>
 </child>
 <child>
 <person>
 <name>Robert</name>
 <addr>Old Street, 25</addr>
 </person>
 </child>
</person>
<person age='20'>
 <name>Mary</name>
 <addr>Quensway, 34</addr>
 <hobby>painting</hobby>
</person>
</doc>

<!ELEMENT doc (person)*>
<!ELEMENT person (name, addr,
(hobby)*, (child)*)? >
<!ATTLIST person age CDATA
#IMPLIED>
<!ELEMENT child person>
<!ELEMENT name #PCDATA>
<!ELEMENT addr #PCDATA>
<!ELEMENT hobby #PCDATA>

label

Parent

.

.

.
children

left-sibling

next-in-blockprev-in-block

right-sibling

Indirection
table

...

...

node handle

(a) (b) (c)

Fig. 1. An XML document Gtree and its DTD (a), Data organization scheme (b), node
descriptor (c)

The structural and text parts of a node are separated. The structural part of a
node reflects its relationship to other nodes (i.e. parent, children, sibling nodes)
and is presented in a form of node descriptor, which structure is shown in Fig. 1
(c). The important property of node descriptors is their fixed size length in each
page belonging to one DataGuide node. The text parts are stored in separated
data pages and text values are a variable-length records.

All relationships between node descriptors are implemented via direct/indirect
pointers. While direct pointers are preferable for querying data they are the main
source of problems for efficient update execution. To support updates efficiently,
we should minimize the number of modifications caused by the execution of
update operation. Let us consider an operation of page splitting as a result of
inserting a node into an overfilled block. If the node to be moved from one page
to another page has children, they all must be modified to change their parent
pointers to the node. The solution is to use indirect pointers, that is implemented
via indirection table, to refer to the parent as shown in Fig. 1 (c). Note, that
parent pointer is the only indirection pointer in Sedna data storage. Therefore,
combining direct and indirect pointers allows to keep tradeoff between queries
and updates efficiency.

The more detailed description of data organization in Sedna see in [7].

3.2 Versioning Scheme

In this subsection we describe versioning scheme implemented in Sedna. For
each data item at most four versions (created by updaters) are maintained. We
assume data items to be pages (further we justify our choice). Some of these
versions are used as parts of logical snapshots of the database. Logical snapshot
(used by queries) is a set of versions that represents transaction-consistent state

126 P. Pleshachkov and S. Kuznetcov

of the database at the moment of snapshot creation. In this paper we describe
versioning scheme for the case of two snapshots. We will refer to them as the
current snapshot and the previous snapshot.

To identify different versions we will use the following labels:

– WV. Working Version. This label represents version that has been created
by not yet committed transaction.

– LCV. Last Committed Version. This is the most recent committed version.
– CS. Version belonging to current snapshot.
– PS. Version belonging to previous snapshot.

Some versions can have several labels. For example, version can be labeled as CS
and PS, because it is an obsolete version that is a part of a current and previous
snapshot. So, physically there may exist less than four versions of one data
item. Besides, it is important to mention that labels are not physically stored
in versions. Our protocol identifies version label using the auxiliry structures
described below.

To dynamically identify versions we use the following structures: list contain-
ing active (i.e. not committed) transactions (we will call it ActList), timestamp
of version (which is obtained at the moment of creation of version) and version’s
creator identifier (which is an identifier of corresponding updater). ActList is a
global list, but timestamp and identifier are version-dependent and usually are
stored on the page itself. Moreover, for each snapshot we needs timestamp of its
creation (TCS and TPS for our snapshots) and copy of ActList at the moment
of snapshot creation (ActListCS and ActListPS).

Below we will describe algorithms how to identify LCV, WV, CS and PS
versions. Consider list V , containing metadata (timestamp and creator identifier)
about all versions of some data item1. Let us assume that this list is sorted in
descending order by timestamps. We can identify versions as follows:

– WV. This version is always the most recent one. So if it exists, it is the first
one in V . And this version exists iff the identifier of the first version in V is
in the ActList.

– LCV. We have two possibilities here. If WV version exists, then LCV is the
next one in V . If WV version does not exist, then LCV is the first one in V .

– CS. To find version belonging to current snapshot, the transaction manager
(TM) first obtains sublist V ′ of V that contains versions with timestamps
less than TCS . In fact, V ′ contains versions that existed at the moment of
snapshot creation. The problem is that this sublist can contain WV version
as well, because the TM did not wait until they committed. That is where
ActListCS comes in. Since it is a copy of ActList at the moment of snapshot’s
creation, all that TM needs is to select LCV version from V ′ as described in
previous item.

– PS. The procedure is similar to the CS version identification.
1 In our implementation we store list V in the header of page which represents last
version.

SXDGL: Snapshot Based Concurrency Control Protocol for XML Data 127

3.3 Memory Management

As pointed in the previous subsection, one of the key design choices concerning
the data organization in Sedna storage system is to use direct pointers to present
relationships between nodes. Therefore, traversing the nodes during query ex-
ecution results in intensive pointer dereferencing. Making dereferencing as fast
as possible is of crucial importance to achieve high performance. To achieve it a
special memory-mapped architecture is used (see Fig. 2). The key idea of mem-
ory management in Sedna is integrating persistence with virtual memory system.
To achieve this goal database address space (DAS) is divided into layers of equal
size that fits virtual address space (VAS). A layer consists of pages; pages store
XML data. The address of an object in DAS consists of (1) the layer number
and (2) the address within the layer.

As shown in Fig. 2, an address within the layer is mapped to the address in
VAS on the equality basis: the address of an object in the VAS is the address
of the object within a layer. The address range of VAS is in turn mapped onto
main memory by the Sedna buffer manager using memory facilities provided by
the operation system. The address mapping suggested allows dereferencing the
pointer very effectively, as it completely eliminates pointer swizzling overhead.
An important issue here is an integration of memory-mapped architecture and
versioning scheme. When a pointer dereferencing is performed and the required
page is not mapped into VAS, a page-fault event is generated. As a result,
the page-fault event handler is activated, which refers to the buffer manager to
find an appropriate version of the required page, and then map it into VAS.
It is worth mentioning that we access all versions via last version of the page,
which in header contains information about all remaining versions. So, at most
one additional I/O operation is performed to locate the appropriate version.
The next access to the page the most likely will not generate page-fault event
(because the needed version is already mapped in VAS). The mapping will be
broken only if transaction requires to map a new page from other layer with the
same address within the layer.

Summarizing above discussion, we conclude that an expensive procedure of
locating an appropriate version will be performed relatively rarely (in most cases
only when the first access to the page in transaction is occurred), and, as a result,
it significantly reduces the overhead incurred by versioning scheme. Also, this is
the reason why we support page-level granularity of versions of data item.

transaction process
database address space (DAS)

Virtual address space (VAS)

buffer manager
buffer

memory

database (secondary memory)

Fig. 2. Memory-mapped architecture

128 P. Pleshachkov and S. Kuznetcov

4 SXDGL Protocol

In this section we will describe our SXDGL protocol. The next two subsections
discuss processing techniques for queries and updaters. In the last subsection we
discuss some theoretical issues.

4.1 Query Processing

Queries are transactions that contain only read operations. Since such transac-
tions are processed in a special way, the TM must know that a new transaction
is a query. For efficient processing of queries SXDGL maintains two logical snap-
shots: the current snapshot and the previous snapshot. When a new query begins
it starts reading the current snapshot, which it cannot change during execution.
Moreover, it does not need to acquire any kind of locks. Since queries do not
obtain any locks they never experience delays because of the data contention
with updaters. Note, that queries reading the current/previous snapshot always
read CS/PS versions of pages. The CS/PS version identification procedure we
discussed earlier in section 3.2.

Since logical snapshots represent an obsolete state of the database, a snap-
shot advancement procedure should be activated periodically. To take a new
snapshot the TM must have a free one, i.e. this snapshot must not be used by
any transaction. New queries always start using the current snapshot (i.e. CS
version). So if the current snapshot is free, the TM just takes another one by
obtaining a timestamp in TCS and copying the ActList into ActListCS. But
if the current snapshot is used by other queries, then it must be kept intact
for them during their execution. The TM uses the previous snapshot for this
purpose. To backup the current snapshot it copies TCS into TPS and ActListCS

into ActListPS. However, if the previous snapshot is also in use by other queries,
then the creation of a new snapshot must be delayed.

4.2 Updaters Processing

To handle concurrent updaters properly SXDGL follows the two-phase locking
rule that means updater acquires an appropriate long term lock before accessing
an XML-document’s nodes and keeps them until the end. Besides, to ensure
physical consistency of data pages we use short term latches [15] on pages, which
are hold during the reading or writing the page.

SXDGL supports fine-grained lock granularity. We use DataGuide as a locking
structure, i.e. we lock DataGuide nodes instead of XML-document nodes itself.
Besides, SXDGL provides for annotations of locks on DataGuide nodes with sim-
ple predicates (conjunction of comparisons with constants) on XML-document
nodes. SXDGL supports two kinds of long term locks: structural locks and logical
locks, which we introduce in the subsections below.

Structural Locks. Below we present different types of structural locks which
are used by updaters to isolate one from each other. All these locks are acquired

SXDGL: Snapshot Based Concurrency Control Protocol for XML Data 129

on the DataGuide’s nodes and can be accompanied by predicates. Structural
locks are divided into two classes: node locks and tree locks. The node locks im-
pose restrictions on access to the XML-document nodes belonging to the locked
DataGuide’s node. The tree locks implicitly impose restrictions on access to all
XML document nodes belonging to the locked DataGuide’s node or DataGuide
nodes located under the locked DataGuide’s node.

– P (pass) lock. This node lock is used by P operation. It is set on the
DataGuide’s nodes, which match the Itm nodes of P. This lock prevents
the deletion of Itm nodes by other updaters, but it does not prohibit any
insertions of the nodes extending the sequence of Itm nodes (see example 1
below).

– S (share) lock. This node lock is also used by P operation. It is set on the
DataGuide’s nodes, which match the Dst nodes of P. This lock prevents any
modifications of Dst nodes. For example, for query count(/doc/person) S
lock is set on the node n2 (see Fig. 1 (b)).

– SI (shared into) lock. This node lock is used by II operation. It is set on the
DataGuide’s nodes, which match the target nodes of II. This lock prevents
the modification of II ’s target nodes and insertion of another nodes into
the target nodes by concurrent transactions. The SA (shared after) and SB
(shared before) locks are defined in a similar way.

– XN (exclusive new) lock. This node lock is used by insert operations. It is
set on the DataGuide’s node, which matches the newly created nodes. This
lock allows passing by the new node, (i.e it compatible with P lock), but
other operations (e.g. modification) on the node are prohibited.

– X (exclusive) lock. This node lock is used by operations, which modify in-
ternal nodes of the document. This lock prevents any concurrent reads and
updates of the node. In our set of update operations this lock is used by RN
operation since it renames the target nodes inside the document. It is set on
the DataGuide’s nodes which correspond to the RN ’s target and new nodes.
Note, if we rename the leaf node then we only need to acquire X lock on the
RN ’s target nodes and XN lock on the new nodes.

– ST (shared tree), XT (exclusive tree) locks. The ST (XT) lock is a tree
lock. The ST (XT) lock is set on the DataGuide’s node and implicitly locks
all its descendants in shared (exclusive) mode. The ST (XT) lock prevents
any updates (reads and updates) in the entire subtree. For example, XT lock
is set on target nodes of D operation.

– IS (intention shared), IX (intention exclusive) locks. The IS (IX) lock must
be obtained on each ancestor of the node, which is to be locked in one of the
shared (exclusive) modes. It ensures that there are no locks on the coarser
granules locking the node in conflicting mode.

To deal with value-based constraints, each structural lock has an annotated
value-based predicate. The predicates locks are managed efficiently by approxi-
mating predicates using signatures [5]. The compatibility matrix for structural
locks is shown in the Fig. 3. There are no strict incompatibilities in matrix.

130 P. Pleshachkov and S. Kuznetcov

requested S P SI SA SB XN X ST XT IS IX
S + + + + + cp cp + cp + +
P + + + + + + cp + cp + +
SI + + cp + + cp cp + cp + +
SA + + + cp + cp cp + cp + +
SB + + + + cp cp cp + cp + +
XN cp + cp cp cp + cp cp cp + +
X cp cp cp cp cp cp cp cp cp + +

ST + + + + + cp cp + cp + cp
XT cp cp cp cp cp cp cp cp cp cp cp
IS + + + + + + + + cp + +
IX + + + + + + + cp cp + +

granted

Fig. 3. Structural locks compatibility matrix

Symbol CP (check predicates) in matrix means that the requested lock is com-
patible with granted locks only if conjunction of annotated predicates is not
satisfiable.

Next we study a couple of examples (using XML document presented in
Fig. 1) to illustrate the locking mechanisms2.

Example 1. Let us consider transactions T1={II(/doc ,<person/>)}, T2={

II(/doc,<person/>)} and T3={/doc/person/name}. According to SXDGL the
following sets of structural locks {n1: (SI, IX), n2: XN}, {n1: (SI, IX),

n2: XN} and {n1: P, n2: P, n4: ST} must be obtained by transactions T1, T2
and T3 respectively. Thus, we obtain that T1, T3 and T2, T3 can run concurrently
whereas T1 and T2 can not run concurrently due to the conflict of SI locks on
node n1 (thus we prevent document order conflict).

Example 2. For transactions T1=D(/doc/person/@age)} and T2={for $v in

//person return <name2>{$v/ name}</name2>} we need to obtain the sets of
structural locks {n1: (IX, P), n2: (IX, P),n3:XT} and {n1: IS, n6: IS,

n2: S, n8: S, n4: ST, n10: ST} respectively. Since locks required by T1 and
T2 are compatible, we conclude that T1 and T2 can be executed concurrently.

Logical Locks. Now we turn to the discussion of the logical locks, which are
used to prevent phantoms. Let us show how a phantom could appear. Suppose
that transaction T1 reads all of age attributes in GTree XML-document (see
Fig. 1), i.e. T1 issued //@age query. In the meantime transaction T2 inserts new
age attribute into person element with name ’John’. The new age attribute is
the phantom for transaction T1. Generally speaking, phantoms can appear when
update operation extends the DataGuide3 (adds new path to it) and this modifi-
cation results in the changing of target nodes of previously executed operations.

Thus, we introduce two locks. The first lock is L (logical) lock, which must be
set on DataGuide’s node to protect the node’s subtrees in the document from
a phantom appearance. A logical lock specifies a set of properties. Essentially,
a property is a logical condition on nodes. This lock prohibits the insertion of
new nodes, which possess these properties. The second lock is IN (insert new
node) lock, which specifies the properties of new node. The update operation,

2 Note, that in example 2 we omit logical locks.
3 In our set of update operations II, IA, IB and RN operations can extend the
DataGuide.

SXDGL: Snapshot Based Concurrency Control Protocol for XML Data 131

which extends the DataGuide, should obtain the IN lock on each ancestor of the
new node.

Here we list all possible combinations of properties for L lock: (1) node-
name=’name1’ (e.g. //person), (2) node-name=’name1’, node-value relop ’val1’
(e.g. //name[.�=’John’]), (3) node-name=’name1’, child-name=’name2’, child-
value relop ’val1’ (e.g. //person[name �= ’John’]). Here relop is a comparison
operation.

To check that the new node’s properties do not interfere with the L lock
properties, the IN lock should specify three properties of a new node: new-node-
parent-name, new-node-name, new-node-value.

Thus, L and IN locks are incompatible if one of the following conditions holds:

– If IN’s new-node-name equals to a node-name of L lock and L does not
contain any other properties (case (1) from the above)4.

– If IN’s new-node-name and new-node-value both match appropriate values
of L lock consisting of two properties. That is, node-name=new-node-name
and new-node-value relop ’val1’ �= #f (case (2) from the above).

– If all IN’s properties match three properties of L lock. That is node-name=
new-node-parent-name, child-name=new-node-name and new-node-value
relop ’val1’ �= #f (case (3)).

If node’s name is a wildcard ’*’ then it equals to any node-name.

DTD-Based Concurrency Enhances. The main benefit of using DataGuide
as a locking structure is that the locking overhead is reduced significantly. How-
ever, there are some drawbacks. The problem with DataGuide is that it lacks the
notion of document order. Therefore, the evaluation of ordered-based axes (e.g.
preceding-sibling, following-sibling) on DataGuide may result in the lock of un-
necessary DataGuide nodes. As a consequence, we can get unnecessary conflicts
among transactions.

To reduce the number of such conflicts we use DTD, which specifies the docu-
ment order. For instance, on the basis of the GTree’s DTD information <!ELEMENT

person (name, addr, (hobby)*, (child)*)?!> we can resolve the conflict be-
tween transactions T1={/doc/person/ addr/preceding-sibling::*} and
T2={D(/doc/person/hobby)}. Indeed, withoutDTDinformationT1must acquire
ST lock on all DataGuide’s nodes of level 2 (n3, n4, n5, n6, n7), whereas T2must ob-
tain XT lock on node n7 of level 2. Thus, there is a conflict between T1 and T2 on
node n7. But using DTD we know that preceding sibling of addr element can only
be name element, and T1must acquire ST lock only on node n4 thereby allowing T2
to run concurrently.

Transaction Dependency Graph. In this subsection we discuss some com-
plications, which arise due to the fact that a granularity of locks is less than a
granularity of versions. Specifically, there may be a situation when some pages
4 In case of RN operation we compare only new-node-name property of IN lock with
node-name property of L lock. Another properties of IN lock are not considered.

132 P. Pleshachkov and S. Kuznetcov

would always keep updates produced by a non-committed updater. As a result,
last updates performed by already committed updaters would not be visible for
queries even if the snapshot advancement procedure is taken regularly. Please
note that queries must always see a transaction-consistent snapshot.

To cope with this problem we introduce a transaction dependency graph (we
call it TDG). TDG is an undirected graph whose nodes are the updaters. The
new edge between updaters Ui and Uj is added in TDG if the following rules
hold: (1) Ui, Uj ∈ ActList, (2) Ui tries to update the page that already has been
updated by noncommitted Uj .

To provide an efficient way to check the (1) and (2) rules we use a lock
manager. Recall, that before updating a page updater must acquire an X latch
on this page. When updater releases the X latch from the page the TM converts
it to C lock. The C locks are compatible with every other types of locks/latches,
even with the exclusive ones. So C locks are not locks in the common sense of
this word, but they can be easily implemented within a lock manager. The C
locks are released by updaters only at commit time. So, a new edge between Ui

and Uj is added in TDG if (1) Ui tries to update a page, and (2) there is a C
lock on that page hold by Uj.

Besides, before updater U commits, it must perform the following actions:

1. If U ∈ TDG then mark the node in TDG corresponding to U with P (“pre-
pared”).

2. If U �∈ TDG then remove U from ActList.

So, after U commits, it is removed from ActList and would be visible for new
queries after next snapshot advance only if it is not a member of TDG. But
updates produced by updaters that are the members of TDG would not be
visible for queries. However, when the maximum subgraph SG of DTG (i.e. there
is no node N ∈ TDG ∧ N �∈ SG such that the edge (N, K) ∈ TDG ∧ K ∈ SG)
consists of nodes all of which are marked with P, then the SG subgraph can be
removed from TDG, and the corresponding U ’s can be removed from ActList.
If the number of TDG’s nodes exceeds a given threshold the TM turn on a
propagation mode. In propagation mode the TM changes the compatibility rules
for C lock. Particularly, it requires the incompatibility of the X and C latches. It
guarantees that TDG will not grow infinitely and after certain period of time it
will be empty. Then the TM again turn on a normal mode, i.e. C locks become
compatible with any other kind of latches/locks.

Also, it is significant that updater creates a new version of page only in case
if the last version is committed. Otherwise, it performs update in last version of
the page.

4.3 Correctness

Theorem 1. SXDGL guarantees serializability of all transactions.

Due to space restrictions we skip the formal proof of this theorem. A formal
proof of this theorem can be found in extended version of this paper [16]. Note,

SXDGL: Snapshot Based Concurrency Control Protocol for XML Data 133

however, that serializability is the key feature for any concurrency control pro-
tocol. Many applications rely on serializability and cannot simply sacrifice it for
performance gains.

5 Experimental Evaluation

In this section we present an experimental evaluation of SXDGL. We compare
it with the conventional two-phase multigranularity locking protocol (we call it
DGL), which employs DataGuide as a locking structure. To conduct such evalu-
ation we have prototyped both protocols in Sedna XML database. Sedna server
was installed on Intel Pentium 4 2.8GHz, 512Mbs RAM machine, run under
Windows XP. We use a standard XMark tool [1] to generate XML-documents.
The 100Mb XML-documents were loaded into Sedna database and then we run
experiments using this database. Since XMark benchmark does not cover up-
dates, we generated our own update operations, e.g. converting open auction to
a closed auction, adding new bidders, changing shipment types, etc.

In our experiments workload contains 25% of queries and 75% of updaters
running concurrently. Selectivity factor for queries is varied from 5% to 55% of
the whole XML-document, but within the same experimental run it stays fixed.
Updaters on the other hand are relatively short, containing approximately 20
update operations.

Fig. 4 (a) shows updaters throughput. As we can see, for SXDGL selectivity is
not an issue. Queries just read snapshots, while updaters write new versions. Up-
daters do not experience long delays, because they do not intersect with queries.
Any delays would be because of data contention between updaters themselves,
but the number of such delays is reduced significantly by means of smart detec-
tion of conflicts. Data contention becomes a problem for DGL, though. In this
case queries and updaters read the same nodes. In fact, the queries are executed
as updaters here, obtaining an appropriate lock before accessing nodes in XML-
document. It does not create any problems when query selectivity is about 5%,
because in this case queries are relatively small and data contention is not high
enough to cause problems. However, increasing query selectivity also increases
execution time of the queries and data contention. At 55% selectivity almost
all new updaters conflict with queries and, as a result, spend most of the time
waiting for them. The data contention problem for updaters run under DGL is
increased because of the great number of unnecessary conflicts with queries. The
most artificial conflicts arise because DGL always uses tree locks, but in most
cases updaters do not read/update the whole subtrees.

Fig. 4 (b) shows query throughput. Here we see that DGL and SXDGL demon-
strates approximately the same query throughput. In fact, this experiment com-
pares the overhead of query processing for DGL and SXDGL. For DGL the
overhead consists of locking on DataGuide’s nodes and delays caused by concur-
rent updaters. For SXDGL the overhead includes one possible additional read
operation of a page on each basic read. In this case the query first reads an LCV
version, which contains information about all remaining versions, determines

134 P. Pleshachkov and S. Kuznetcov

0

1

2

3

4

5

1 2 3 4 5 6

query selectivity, %

th
ro

u
g

h
p

u
t,

 t
r/

s
e

c

SXDGL DGL

(a) (b)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

query selectivity, %

th
ro

u
g

h
p

u
t,

tr

/s
e

c

SXDGL DGL

5 15 25 35 45 55 5 15 25 35 45 55

Fig. 4. Updater throughput (a) and query throughput (b)

the version for reading and reads it then. If an LCV version is a suitable ver-
sion itself, no additional read operation occurs. As we can see in Fig. 4 (b), the
DGL overhead slightly exceeds multiversioning overhead of SXDGL. So, query
throughtput is slightly lower under DGL.

Also, we would like to mention that we also evaluated the locking overhead in
DGL and SXDGL. The experiments confirmed that the locking overhead is much
smaller than the overhead incurred by delays caused by concurrent updaters
(under DGL) and additional I/O operations (under SXDGL), respectively.

Summarizing our experiments show that SXDGL has benefits in both query
and updater processing. More importantly, it offers significantly higher updater
throughput.

6 Related Work

Various concurrency control protocols have been developed to deal with XML
data effectively. Most of them are based on the multigranularity locking tech-
niques, which are extensively used in relational databases.

In [10,12] authors presented locking protocols, which introduce new
lock modes tailored especially for efficient concurrent processing of DOM-like
operations. Moreover, in [11] Haustein et al. proposed a new DeweyID labeling
scheme to acquire intention locks efficiently. These protocols seem to work per-
fectly for DOM-like operations, but there is no research done whether they could
suite well for concurrent processing of XQuery/XUpdate operations.

The protocols developed in [6,4,14] rely on the assumption that XML is ac-
cessed by means of XPath query language. They propose to use “path locks”
to achieve higher concurrency. However, these methods have a number of short-
comings. In [6], the authors deal with too restrictive subset of XPath. The other
works deal with more complex XPath queries, but the conflict determination
for them becomes too expensive. Besides, these methods cause excessive locking
overhead if we have to deal with huge XML-documents.

Another approach to deal with concurrent processing of XML-transactions in
RDBMSs was presented in [9]. The authors proposed DGLOCK protocol, which

SXDGL: Snapshot Based Concurrency Control Protocol for XML Data 135

employs DataGuide structure for locking purposes. Unfortunately, DGLOCK
protocol is suitable only for limited subset of XPath excluding such impor-
tant axes like descendant, following-sibling, preceding-sibling, etc. Moreover,
DGLOCK uses conventional multigranularity locking scheme, which leads to
a great number of pseudoconflicts. Finally, DGLOCK protocol does not ensure
serializability of produced schedules. In [18] the authors extended Grabs et al.’s
approach and eliminated the most their shortcomings. However, the applicabil-
ity of these methods is restricted to RDBMSs with XML support while in this
paper we focus on concurrency control for native XML databases.

In our earlier work [17] we presented XDGL, an XPath-based locking pro-
tocol, which also uses DataGuide as a locking structure. In that work a full
set of XPath axes was considered. Actually, the SXDGL protocol presented in
this paper is an extension of XDGL in a number of different directions. Firstly,
in SXDGL we consider XQuery as a query language. Secondly, we extended
SDXGL with support of multiversioning that enables to execute queries without
unnecessary delays. Finally, SXDGL introduces new lock modes, which allow
to capture the semantics of XQuery/XUpdate operations determining conflicts
between updaters. So, a number of pseudoconflicts is significantly reduced.

To the best of our knowledge, there is only one short paper [19], which sug-
gests multiversioning approach for concurrency control in XML. The authors
proposed SnaX protocol. Unfortunately, due to space limitations the authors
did not present many important details about smart conflict detection and im-
plementation. The overhead of their protocol is not evaluated. Moreover, SnaX
protocol does not guarantee serializability of produced schedules.

7 Conclusion

In this paper we presented a new approach, called snapshot based XML
DataGuide locking protocol (SXDGL), which supports efficient processing of
concurrent transactions in native XML database. SXDGL supports two classes
of transactions: queries and updaters. SXDGL guarantees non-interference of
queries and updaters, but queries still may access a slightly obsolete data. A
special memory-mapped architecture is introduced to reduce the multiversion-
ing overhead.

Our protocol introduces smart detection of conflicts between updaters exploit-
ing semantics of XQuery/XUpdate operations. Moreover, we use DataGuide as
a locking structure, which usually relatively small, and, as a result, the lock-
ing overhead is significantly reduced as opposed to approaches that use XML-
document nodes for locking purpose. However, in case of complex predicates used
in XQuery/XUpdate operations the granularity of locking may be slightly more
coarse-grained than a individual node. Hence SXDGL allows to keep trade-off
between granularity of locks and locking overhead.

Finally, we prototyped SXDGL in Sedna and conducted an experimental eval-
uation, which confirms that SXDGL provides an efficient solution to the problem
of processing of concurrent transactions in native XML database.

136 P. Pleshachkov and S. Kuznetcov

References

1. XMark - An XML Benchmark Project. http://monetdb.cwi.nl/xml/
2. Chamberlin, D., Carey, M., Florescu, D., Kossmann, D., Robie, J.: XQueryP: Pro-

gramming with XQuery. In: XIME-P Workshop (2006)
3. Chamberlin, D., Florescu, D., Robie, J.: XQuery Update Facility. W3C Consor-

tium (2006), http://modis.ispras.ru/sedna/
4. Choi, H.: XPath-based Concurrency Control for XML Data. In: DEWS (2003)
5. Dadam, P., Pistor, P., Schek, H.-J.: A predicate oriented locking approach for

integrated information systems. In: IFIP Congress, pp. 763–768 (1983)
6. Dekeyser, S., Hidders, J.: Conflict scheduling of transactions on XML documents.

In: ADC, pp. 93–101 (2004)
7. Fomichev, A., Grinev, M., Kuznetsov, S.: Sedna: a Native XML DBMS. In: SOF-

SEM, pp. 272–281 (2006)
8. Goldman, R., Widom, J.: Dataguides: Enabling Query Formulation and Optimiza-

tion in Semistructured Databases. In: VLDB, pp. 436–445 (1997)
9. Grabs, T., Böhm, K., Schek, H.-J.: XMLTM: Efficient Transaction Management

for XML Documents. In: CIKM, pp. 142–152 (2002)
10. Haustein, M.P., Härder, T.: Adjustable transaction isolation in XML database

management systems. In: Bellahsène, Z., Milo, T., Rys, M., Suciu, D., Unland, R.
(eds.) XSym 2004. LNCS, vol. 3186, pp. 173–188. Springer, Heidelberg (2004)

11. Haustein, M.P., Härder, T., Mathis, C., 0002, M.W.: Deweyids - the key to fine-
grained management of XML documents. SBBD, 85–99 (2005)

12. Helmer, S., Kanne, C.-C., Moerkotte, G.: Lock-based protocols for cooperation on
XML documents. In: DEXA Workshops, pp. 230–234 (2003)

13. ISP RAS. Sedna, a Native XML Database. http://modis.ispras.ru/sedna/
14. Jea, K.-F.J., Chen, S.-Y., Wang, S.-H.: Concurrency control in XML document

databases: XPath locking protocol. In: ICPADS, pp. 551–556 (2002)
15. Mohan, C., Haderle, D.J., Lindsay, B.G., Pirahesh, H., Schwarz, P.M.: ARIES: a

transaction recovery method supporting fine-granularity locking and partial roll-
backs using write-ahead logging. ACM Trans. Database Syst. 17(1), 94–162 (1992)

16. Pleshachkov, P., Kuznetsov, S.: SXDGL: Snapshot based Concurrency Control
Protocol for XML Data (extended version). Technical Report, ISP RAS (2006),
http://modis.ispras.ru/downloads/publications/sxdgl-extended.pdf

17. Pleshachkov, P., Chardin, P., Kuznetsov, S.: A DataGuide-based concurrency con-
trol protocol for cooperation on XML data. In: Eder, J., Haav, H.-M., Kalja, A.,
Penjam, J. (eds.) ADBIS 2005. LNCS, vol. 3631, pp. 268–282. Springer, Heidelberg
(2005)

18. Pleshachkov, P., Kuznetsov, S.: Transaction management in RDBMSs with XML
support. Programming and Computing Software. 32(5), 3–20 (2006)

19. Sardar, Z., Kemme, B.: Don’t be a pessimist: Use snapshot based concurrency
control for XML. In: ICDE (poster paper), p. 130 (2006)

20. Thomasian, A.: Performance limits of two-phase locking. In: ICDE, pp. 426–435
(1991)

21. Weikum, G., Vossen, G.: Transactional information systems. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2001)

http://monetdb.cwi.nl/xml/
http://modis.ispras.ru/sedna/
http://modis.ispras.ru/sedna/
http://modis.ispras.ru/downloads/publications/sxdgl-extended.pdf

The Generation Y of XML Schema Matching

Panel Description

Avigdor Gal

Technion – Israel Institute of Technology
avigal@ie.technion.ac.il

Schema matching is the task of matching between concepts describing the mean-
ing of data in various heterogeneous, distributed data sources (e.g. XML DTDs
and XML Schemata). Schema matching is recognized to be one of the basic op-
erations required by the process of data integration [3], and thus has a great im-
pact on its outcome. Schema mappings (the outcome of the matching process) can
serve in tasks of generating global schemata, query rewriting over heterogeneous
sources, duplicate data elimination, and automatic streamlining of workflow activ-
ities that involve heterogeneous data sources. As such, schema matching has im-
pact on numerous applications. It impacts business, where company data sources
continuously realign due to changing markets. It also impacts life sciences, where
scientific workflows cross system boundaries more often than not.

The baby-boom generation of schema matching involves two decades of
research, summarized in surveys (e.g., [19,6,21]) and various online lists (e.g., On-
tologyMatching1, Ziegler2, DigiCULT3, SWgr4). A significant body of work was
devoted to the identification of schema matchers, heuristics for schema matching.
Examples include COMA [7], Cupid [13], OntoBuilder [11], Autoplex [2], Simi-
larity Flooding [15], Clio [16], Glue [8], to name just a few. The main objective
of schema matchers is to provide schema mappings that will be effective from
the user point of view, yet computationally efficient (or at least not disastrously
expensive). Such research has evolved in different research communities, includ-
ing databases, information retrieval, information sciences, data semantics, and
others. Research papers in different communities yielded overlapping, similar,
and sometimes identical results.

Some works in XML schema matching (e.g., Cupid) use the rich(er) structure
of XML in generating heuristics for better matching. Others (e.g., [5,22]) aim at
modeling and using the semantics that can be derived from XML schemata to
map attributes. Efficiency was also tackled in [20,22]. Systems like XLearner [17]
and SMART [18] provide more matching techniques for purposes such as query
rewriting.

The rise of Generation X of schema matching in recent years stems from
the understanding that the approaches taken by baby boomers did not deliver
1 http://www.ontologymatching.org/
2 http://www.ifi.unizh.ch/˜pziegler/IntegrationProjects.html
3 http://www.digicult.info/pages/resources.php?t=10
4 http://www.semanticweb.gr/modules.php?name=News&
file=categories&op=newindex&catid=17

D. Barbosa et al. (Eds.): XSym 2007, LNCS 4704, pp. 137–139, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

138 A. Gal

satisfactory results as of yet [4,9]. For example, on a recent OAEI benchmark of
a real-life matching task5, participating matchers provide 30-40% precision and
recall of 13-45%. The reason may be that the right “silver bullet” is yet to be
found among the existing approaches or that we have been searching in the wrong
place all along. More rigorous attempts at formalizing the problem of schema
matching were performed [3,14,12,10,1]. Aspects of uncertainty and inferencing
were given more attention, striving to better understand the difficulties this area
is facing.

While Generation X is still here, and not yet fulfilled its potential, this
panel will investigate the next generation of schema matching, Generation Y.
The panelists will provide their vision on the following three questions:

– The true goal of schema matching: Are we aiming at a fully automatic
or a semi automatic schema matching? are we aiming at 100% precision?
100% recall? a little bit of both?

– The non-linear climb from 30% precision and recall to 80-90%:
What does it take to reach 40% precision and recall? 50%?...

– Promising directions: will Generation Y be defined by the success or
failure of Generation X? will it take a totally new approach?

References

1. Benerecetti, M., Bouquet, P., Zanobini, S.: Soundness of schema matching methods.
In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 211–225.
Springer, Heidelberg (2005)

2. Berlin, J., Motro, A.: Autoplex: Automated discovery of content for virtual
databases. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS
2001. LNCS, vol. 2172, pp. 108–122. Springer, Heidelberg (2001)

3. Bernstein, P.A., Melnik, S.: Meta data management. In: Proceedings of the IEEE
CS International Conference on Data Engineering, IEEE Computer Society Press,
Los Alamitos (2004)

4. Bernstein, P.A., Melnik, S., Petropoulos, M., Quix, C.: Industrial-strength schema
matching. SIGMOD Record 33(4), 38–43 (2004)

5. Bossung, S., Stoeckle, H., Grundy, J.C., Amor, R., Hosking, J.G.: Automated data
mapping specification via schema heuristics and user interaction. In: 19th IEEE
International Conference on Automated Software Engineering (ASE 2004), Linz,
Austria, 20-25 September 2004, pp. 208–217. IEEE Computer Society Press, Los
Alamitos (2004)

6. Do, H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In:
Proceedings of the 2nd Int. Workshop on Web Databases (German Informatics
Society), 2002 (2002)

7. Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching
approaches. In: Proceedings of the International conference on Very Large Data
Bases (VLDB), pp. 610–621 (2002)

8. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between on-
tologies on the semantic web. In: Proceedings of the eleventh international confer-
ence on World Wide Web, pp. 662–673. ACM Press, New York (2002)

5 http://oaei.ontologymatching.org/2006/results/directory/

The Generation Y of XML Schema Matching Panel Description 139

9. Gal, A.: Why is schema matching tough and what can we do about it? SIGMOD
Record 35(4), 2–5 (2007)

10. Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for model-
ing and evaluating automatic semantic reconciliation. VLDB Journal 14(1), 50–67
(2005)

11. Gal, A., Modica, G., Jamil, H.M., Eyal, A.: Automatic ontology matching using
application semantics. AI Magazine 26(1), 21–32 (2005)

12. Madhavan, J., Bernstein, P.A., Domingos, P., Halevy, A.Y.: Representing and rea-
soning about mappings between domain models. In: Proceedings of the Eighteenth
National Conference on Artificial Intelligence and Fourteenth Conference on Inno-
vative Applications of Artificial Intelligence (AAAI/IAAI), pp. 80–86 (2002)

13. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with Cupid.
In: Proceedings of the International conference on Very Large Data Bases (VLDB),
Rome, Italy, pp. 49–58 (September 2001)

14. Melnik, S.: Generic Model Management: Concepts and Algorithms. Springer, Hei-
delberg (2004)

15. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A programming platform for generic
model management. In: Proceedings of the ACM-SIGMOD conference on Manage-
ment of Data (SIGMOD), San Diego, California, pp. 193–204. ACM Press, New
York (2003)

16. Miller, R.J., Hernàndez, M.A., Haas, L.M., Yan, L.-L., Ho, C.T.H., Fagin, R., Popa,
L.: The Clio project: Managing heterogeneity. SIGMOD Record 30(1), 78–83 (2001)

17. Morishima, A., Kitagawa, H., Matsumoto, A.: A machine learning approach to
rapid development of xml mapping queries. In: Proceedings of the IEEE CS Inter-
national Conference on Data Engineering, pp. 276–287. IEEE Computer Society
Press, Los Alamitos (2004)

18. Morishima, A., Okawara, T., Tanaka, J., Ishikawa, K.: Smart: a tool for semantic-
driven creation of complex xml mappings. In: Proceedings of the ACM-SIGMOD
conference on Management of Data (SIGMOD), pp. 909–911. ACM Press, New
York (2005)

19. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4), 334–350 (2001)

20. Rahm, E., Do, H.H., Massmann, S.: Matching large xml schemas. SIGMOD
Record 33(4), 26–31 (2004)

21. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal
of Data Semantics 4, 146–171 (2005)

22. Smiljanic, M., van Keulen, M., Jonker, W.: Formalizing the xml schema matching
problem as a constraint optimization problem. In: Andersen, K.V., Debenham, J.,
Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 333–342. Springer, Heidelberg
(2005)

Author Index

Arévalo Rosado, Luis J. 107
Aumueller, David 14

Balmin, Andrey 77
Brantner, Matthias 46

Colby, Latha 77
Consens, Mariano P. 31

Gal, Avigdor 137
Guerrini, Giovanna 92

Kanne, Carl-Christian 46
Kuznetcov, Sergei 122

Li, Quanzhong 77
Libkin, Leonid 1

Mart́ınez Gil, Jorge 107
May, Norman 62

Mesiti, Marco 92
Moerkotte, Guido, 46 62
Montazerian, Manizheh 17
Mousavi, Seyed R. 17

Özcan, Fatma 77

Pleshachkov, Peter 122
Polo Márquez, Antonio 107

Rahm, Erhard 14
Rizzolo, Flavio 31

Sorrenti, Matteo Alberto 92

Thor, Andreas 14

Vagena, Zografoula 77

Wood, Peter T. 17

	Title Page
	PREFACE
	ORGANIZATION
	Table of Contents
	Normalization Theory for XML
	Introduction
	Relational Normalization: A Brief Reminder
	Measuring the Amount of Redundancy
	Applying the Measure: Relational Designs
	Applying the Measure: XML Designs
	OpenProblems
	References

	Dynamic Fusion of Web Data
	Introduction
	Information Fusion with iFuice
	References

	XPath Query Satisfiability is in PTIME for Real-World DTDs
	Introduction
	Notation and Background Material
	Real-WorldDTDs
	XPath Satisfiability Under Real-World DTDs
	XPath Satisfiability Under Duplicate-Free DTDs
	XPath Satisfiability Under Covering DTDs

	Conclusion and Future Work
	References

	Fast Answering of XPath Query Workloads on Web Collections
	Introduction
	Motivating Example
	The DescribeX Framework
	From XPath to AxPREs
	Document-at-a-time Evaluation Using SDs
	Experimental Results
	Related Work
	Conclusion and Future Work
	References

	Let a Single FLWOR Bloom
	Introduction
	Related Work
	Overview
	Normalization
	Return Normalization
	Path Normalization

	Merging FLWOR Blocks
	For Rewrites
	Let Rewrites

	Evaluation
	References

	Efficient XQuery Evaluation of Grouping Conditions with Duplicate Removals
	Motivation
	Motivating Example
	State-of-the-Art Processing
	Our Contributions

	Related Work
	The Grouping Algorithms
	Notation
	Sort-Based Evaluation Strategy
	Hash-Based Evaluation Strategy
	Groupify and GroupApply
	Evaluation Strategy-Based on Groupify and GroupApply

	Experiments
	Dataset and Queries

	Conclusion
	References

	On the Effectiveness of Flexible Querying Heuristics for XML Data
	Introduction
	Background
	Heuristics for Flexible Querying over XML Data
	Relatedness Heuristics
	Effectiveness of Heuristics for Tree Structured XML Data
	Effectiveness of Heuristics for Graph Structured XML Data

	Conclusions
	References

	XML Schema Evolution: Incremental Validation and Efficient Document Adaptation
	Introduction
	Related Work
	XML Schemas and Evolution Primitives
	Type Structures Validity and Adaptation
	Incremental Validation and Efficient Document Adaptation
	Experimental Evaluation
	Conclusions and Future Work
	References

	Managing Branch Versioning in Versioned/Temporal XML Documents
	Introduction
	State-of-the-Art
	XML Versioned Documents
	Versionstamp Technique
	Temporal Time in vDocuments
	Changing and Updating a VXML Document

	Retrieval in vDocuments
	Experimentation and Implementation
	Experimental
	Implementation

	Conclusions and Future Work
	References

	SXDGL: Snapshot Based Concurrency Control Protocol for XML Data
	Introduction
	XML Query and Update Languages
	StorageSystem
	Data Organization
	Versioning Scheme
	Memory Management

	SXDGL Protocol
	Query Processing
	Updaters Processing
	Correctness

	Experimental Evaluation
	Related Work
	Conclusion
	References

	The Generation Y of XML Schema Matching
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

